. # Nationaal Cyber Security Centrum
Ministerie van Justitie en Veiligheid

Nieuwe ontwikkelingen in
statische analyse

Onderzoeksrapport

Jan Rooduijn

Onderzoek | NCSC

Static application security testing (SAST) is een methode om automatisch kwetsbaarheden in software te

ontdekken zonder die software te draaien. Het gebruik van SAST-tools wordt door vrijwel alle richtlijnen voor

veilige softwareontwikkeling voorgeschreven. Maar hoe maak je een keuze uit de grote verscheidenheid aan

beschikbare SAST-tools? En hoe waardeer je de bewering van ontwikkelaars van moderne tools dat die

effectiever zouden zijn dan meer gevestigde tools? Tegen welke obstakels lopen ontwikkelaars in de praktijk

aan bij het gebruik van SAST-tools? Dit onderzoek heeft als doel om Nederlandse softwareontwikkelaars verder

te helpen bij het beantwoorden van deze vragen.

Samenvatting

De hoofdvraag van dit onderzoek luidt: hoe kunnen Nederlandse
organisaties profiteren van nieuwe ontwikkelingen in statische
analyse? Eerst zijn op basis van een aantal criteria drie nieuwe
SAST-tools geselecteerd: CodeQL, Infer en Semgrep. Deze tools
zijn vergeleken met de meer gevestigde tool SonarQube.

De belangrijkste resultaten zijn:

« Zowel CodeQL als Semgrep ondersteunt het schrijven van eigen
detectieregels. Deze nieuwe ontwikkeling biedt verschillende
voordelen. Organisaties kunnen bijvoorbeeld profiteren van
detectieregels die worden bijgedragen door derde partijen.
Eigen regels maken het ook makkelijker om SAST-tools
optimaal te benutten door ze specifiek te configureren naar de
eigen organisatie.

« Uit verschillende vergelijkingen in de academische literatuur
blijkt dat de nieuwe SAST-tools accurater zijn in het detecteren
van kwetsbaarheden dan de gevestigde referentietool. Het is
daarom de moeite waard voor organisaties om te experimente-
ren met nieuwe tools.

« Verschillende SAST-tools dekken verschillende gebieden. Het
kan daarom de moeite waard zijn om meerdere SAST-tools te
gebruiken.

Het tweede deel van dit onderzoek richt zich op obstakels die
softwareontwikkelaars ervaren bij het gebruik van SAST-tools.

Op basis van academische literatuur zijn de volgende obstakels als
de belangrijkste geidentificeerd:

1. Te veel foutpositieven

Onvoldoende informatieve meldingen

Te weinig hulp bij het oplossen van meldingen

Onvoldoende workflow integratie

Gebrek aan incorporatie van gebruikersfeedback

VoW

Door middel van een handmatige analyse is nagegaan in hoeverre
de nieuwe tools deze obstakels adresseren. Sommige, maar lang
niet alle obstakels worden door de nieuwe tools geadresseerd. Dit
bevestigt dat het de moeite waard is voor organisaties om met de
nieuwe tools te experimenteren, maar toont ook aan dat er nog
veel ruimte voor verbetering is in de ontwikkeling van SAST-tools.

In het laatste deel van dit onderzoek wordt specifiek de

Nederlandse situatie onder de loep genomen. Hiertoe is een

enquéte uitgevoerd onder mensen die aan (veilige) software-

ontwikkeling werken bij organisaties die onderdeel zijn van de

Rijksoverheid, de vitale sector, of bij softwareleveranciers van deze

organisaties. De belangrijkste bevindingen zijn:

« De nieuwe SAST-tools worden in Nederland relatief weinig
gebruikt in verhouding tot andere landen.

« SAST-tools zijn bij alle respondenten zeer belangrijk voor het
ontdekken van kwetsbaarheden.

- Organisaties in de publieke sector ervaren meer obstakels bij
het gebruik van SAST-tools dan die in de financiéle sector en de
IT-sector.

De bevindingen van dit onderzoek geven aanleiding voor de

volgende aanbevelingen:

» Organisaties die software ontwikkelen zouden SAST-tools
moeten gebruiken om kwetsbaarheden te detecteren.

» Het kan voor organisaties die al lang dezelfde SAST-tool
gebruiken de moeite waard zijn om met een nieuwe tool te
experimenteren. Met name tools die het mogelijk maken eigen
regels te schrijven bieden verschillende voordelen.

» Het kan de moeite waard zijn om meerdere SAST-tools
tegelijkertijd te gebruiken.

« Hetis nuttig om kennis in huis te ontwikkelen om eigen regels
voor SAST-tools te schrijven. Kennisuitwisseling tussen
verschillende Nederlandse sectoren kan het gebruik van
SAST-tools verbeteren.

Dank aan Natalia Kadenko (NCSC) voor het vervullen van een
klankbordrol, aan Rik van Dijk (NCSC) voor review van dit
manuscript, en aan Erik Poll (Radboud Universiteit) voor review,
literatuursuggesties en hulp bij het vinden van respondenten voor
de enquéte.

Inleiding

Kwetsbaarheden in software vormen de basis van veel cyber-
aanvallen. Neem bijvoorbeeld de bekende loggj-casus. Daarbij
hadden ontwikkelaars onvoldoende controle ingebouwd van de
input die een gebruiker kan geven. Aangezien er zeel veel gebruik
gemaakt werd van loggj, leidde dit tot een grote hoeveelheid
kwetsbare systemen, en dus ook cyberaanvallen.

Het is dan ook essentieel om aandacht te besteden aan beveiliging
tijdens het softwareontwikkelproces. Hier bestaan verschillende
best practices voor, zoals bijvoorbeeld die in de Security
Development Lifecycle van Microsoft.” Het NCSC heeft al eerder
onderzoek gedaan naar verschillende van deze best practices,
waaronder Threat Modeling? en SBOM’s3,

Een ander belangrijk onderdeel van veilig softwareontwikkeling is
het uitvoeren van automatische testen. Dit wordt onder andere
aangeraden in de richtlijnen van het NCSC.4 Men verdeelt deze
testen meestal onder in drie categorieén:

1. SAST (Static Application Security Testing): hierbij gaat het om
het analyseren van software zonder die eerst te draaien.

2. DAST (Dynamic Application Security Testing): hierbij wordt de
software juist wel gedraaid tijdens het testen. Een populaire
vorm van DAST is fuzzing.

3. SCA (Software Composition Analysis): dit is gerelateerd aan de
eerdergenoemde SBOM'’s. Het gaat om het automatisch
herkennen van de alle software waar de gescande software
afhankelijk van is, zodat er gewaarschuwd kan worden als een
van die afhankelijkheden een kwetsbaarheid bevat.

Voor elk van deze categorieén is er een actieve industrie die werkt
aan steeds bruikbaardere tools. Daarbij wordt geleund op nieuwe
inzichten vanuit zowel de wetenschap als de praktijk.

' https://www.microsoft.com/en-us/securityengineering/sdl/practices

2 https://www.ncsc.nl/documenten/publicaties/2024/mei/7/index

3 https://www.ncsc.nl/documenten/publicaties/2023/juli/5/sbom-startersgids

4 https://www.ncsc.nl/documenten/publicaties/2019/mei/o1/beleids--en-
beheersingsrichtlijnen-voor-de-ontwikkeling-van-veilige-software

Onderzoek | NCSC

Dit onderzoek beperkt zich tot tools van de eerste categorie:
SAST-tools. Statische analyse is een relatief volwassen vorm van
testen, die in het grootste deel van professionele softwareontwik-
kelingspijplijnen wordt gebruikt. Bekende voordelen van statische
analyse ten opzichte van andere vormen van testen zijn: het
detecteren van kwetsbaarheden vroeg in het ontwikkelproces,
uitgebreide codedekking, en natuurlijke integratie in het
Cl/CD-proces.

Er zijn in het afgelopen decennium verschillende nieuwe SAST-
tools beschikbaar gekomen, die meestal beweren effectiever te
zijn dan de status quo.

De hoofdvraag van dit onderzoek luidt: hoe kunnen Nederlandse
organisaties profiteren van nieuwe ontwikkelingen in statische
analyse?

Doelgroep

Software Engineer

Quality Assurance/Test Engineer
Security Engineer

DevOps Engineer
IT/Infrastructure Manager
Security Analyst

System Administrator
Compliance Officer

https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.ncsc.nl/documenten/publicaties/2024/mei/7/index
https://www.ncsc.nl/documenten/publicaties/2023/juli/5/sbom-startersgids
https://www.ncsc.nl/documenten/publicaties/2019/mei/01/beleids--en-beheersingsrichtlijnen-voor-de-ontwikkeling-van-veilige-software
https://www.ncsc.nl/documenten/publicaties/2019/mei/01/beleids--en-beheersingsrichtlijnen-voor-de-ontwikkeling-van-veilige-software

Deelvragen en methode

Om de onderzoeksvraag meer behapbaar te maken, wordt die
onderverdeeld in verschillende deelvragen. Elke deelvraag is zelf
ook weer verder onderverdeeld.

Deelvraag 1: wat zijn de nieuwe ontwikkelingen in
statische analyse?

Het moet concreet worden wat precies wordt verstaan onder
“nieuwe ontwikkelingen in statische analyse”. Omdat er elk jaar
zeer veel nieuwe tools beschikbaar komen, wordt er in dit
onderzoek een selectie gemaakt, onder andere op basis van
populariteit.

DV1.1 Wat zijn de meest prominente nieuwe tools voor
statische analyse?

Om goed te begrijpen hoe Nederlandse organisaties van de
nieuwe tools kunnen profiteren, is het van belang om te begrijpen
hoe die werken.

DV1.2 Op welke theoretische inzichten zijn deze tools
gebaseerd?

Het is ook nuttig om te weten hoe de nieuwe tools zich tot elkaar
verhouden en tot meer gevestigde tools, zodat organisaties
kunnen inschatten of het de moeite waard is om over te stappen
naar een nieuwe tool.

DV1.3 Hoe verhouden deze tools zich tot elkaar en tot
meer gevestigde tools?

Deelvragen 1.1-1.3 worden beantwoord door middel van een
literatuurstudie.

Deelvraag 2: in hoeverre adresseren deze nieuwe
ontwikkelingen de behoeften van ontwikkelaars?
Uiteindelijk zijn nieuwe ontwikkelingen alleen relevant als ze
bijdragen aan het doel om software veiliger te maken. Het is
daarbij van belang om te weten waarom softwareontwikkelaars
SAST-tools wel of niet gebruiken.

DV2.1 Wat zijn de belangrijkste obstakels die ontwikke-
laars ervaren bij het gebruik van SAST-tools?

Vervolgens is het interessant om na te gaan of de nieuwe tools
deze obstakels ook daadwerkelijk adresseren.

Onderzoek | NCSC

DV2.2 In hoeverre worden deze obstakels geadresseerd
door de nieuwe tools?

Deelvraag 2.1 wordt beantwoord door middel van een literatuur-
studie. Deelvraag 2.2 wordt beantwoord door de antwoorden op
de eerdere deelvragen te vergelijken.

Deelvraag 3: hoe kunnen de nieuwe tools bijdragen
aan de veiligheid van in Nederland ontwikkelde
software?

De primaire doelgroep van dit onderzoek bestaat uit software-
ontwikkelaars die werken bij de doelgroepen van het NCSC (op dit
moment nog de Rijksoverheid en de vitale sector), of bij organisaties
die software aan hen leveren. Het is daarom van belang om meer
inzicht te krijgen in het gebruik van SAST-tools binnen deze groep.

DV3.1 Gebruiken Nederlandse organisaties de nieuwe
tools?

Het is belangrijk dat elke organisatie een tool kan kiezen die bij
ze past.

DV3.2 Welke nieuwe tools zijn geschikt voor welke
organisaties?

Tot slot is het nuttig om te weten welke problemen er kunnen
ontstaan als een organisatie daadwerkelijk een nieuwe tool wilt
gaan implementeren.

DV3.3 Welke problemen kunnen ontstaan bij de
implementatie van nieuwe tools?

Deelvragen 3.1 en 3.2 worden beantwoord door middel van een
enquéte onder Nederlandse softwareprofessionals. Deelvraag 3.3
wordt niet beantwoord in dit rapport, maar kan onderwerp zijn van
een eventueel vervolgonderzoek.

DV1.1: Toolselectie

Om deelvraag 1.1 te beantwoorden is begonnen met een lange lijst
van SAST-tools.5 Via een proces van eliminatie zijn tools geselec-
teerd die:

Meer dan één populaire programmeertaal ondersteunen.
Aangezien dit onderzoek ten goede moet komen aan Nederlandse
organisaties, is het belangrijk dat de geselecteerde SAST-tools
programmeertalen ondersteunen die die organisaties gebruiken.
Dit rapport beschouwt een programmeertaal als populair wanneer
die in de top 5 van de TIOBE-index® voorkomt. Door dit criterium
vallen tools zoals Brakeman en Clippy af.

Meer ontdekken dan slechts problemen gerelateerd aan stijl en
structuur of aan afhankelijkheden. Een probleem gerelateerd aan
stijl en structuur is een probleem dat niet gaat om de betekenis van
de code, maar slechts om de manier waarop die geformatteerd is.
Een kwetsbare afhankelijkheid is een kwetsbaarheid die zich bevindt
in code waar de gescande code afhankelijk van is, in plaats van in de
gescande code zelf. Dit criterium sluit bijvoorbeeld de tools Black en
Dependency-Check uit.

Nieuw zijn. Gezien dit onderzoek zich richt op nieuwe ontwikke-
lingen, worden alleen tools in beschouwing genomen die
ontwikkeld (of grondig herontwikkeld) zijn in het de afgelopen
10 jaar. Hiermee worden tools als Coverity Scan, PMD, SonarQube en
Veracode uitgesloten.

Prominent zijn. Om de studie behapbaar te houden beperkt dit
onderzoek zich tot slechts de meest bekende tools, gemeten aan
de hand van sterren op GitHub. De geselecteerde tools hebben
allemaal minstens 5.000 sterren. Dit sluit meer obscure tools uit,
zoals MOPSA en TScanCode, maar ook FindSecBugs.

Hiermee kan de eerste deelvraag worden beantwoord:

DV1.1 Wat zijn de meest prominente tools voor statische
analyse?

De meest prominente nieuwe SAST-tools die minstens één
populaire programmeertaal ondersteunen en scannen op
meer dan slechts formatteerproblemen en kwetsbare
afhankelijkheden zijn:

1. CodeQL"

2. Infer®

3. Semgrep 0SS?

4. Snyk Code™

https://github.com/analysis-tools-dev/static-analysis
https://www.tiobe.com/tiobe-index/
https://codeql.github.com/

https://fbinfer.com/

https://semgrep.dev/

° https://snyk.io/product/snyk-code/

o

~

©

©

Onderzoek | NCSC

Voor de rest van dit rapport voegen we nog een extra criterium
toe. Namelijk, dat de geselecteerde SAST-tool:

Transparante methoden heeft. Aangezien er ook een deelvraag is
over de onderliggende techniek van deze tools, is het belangrijk
dat daar iets over bekend is. Idealiter is de tool open source, maar
als dat niet zo is dan moet op z'n minst moet ergens duidelijk
beschreven staan hoe de tool werkt. Dit criterium sluit Snyk Code uit.

DV1.2: De geselecteerde tools
In deze paragraaf worden de drie geselecteerde tools kort
beschreven.

CodeQL. Het kernidee van CodeQL is om broncode als data te
beschouwen. Een geheel programma wordt dan een database,
waar informatie uit kan worden opgehaalde door middel van
queries (de QL staat dan ook voor Query Language). Deze techniek
heeft een rijke geschiedenis,” en vormt de basis van CodeQuest,™
een vroege voorganger van CodeQL. CodeQuest gebruikt een
variant van de taal Datalog als query language, die een verbetering
vormt ten opzichte van eerder werk door recursieve queries toe te
laten zonder dat de complexiteit te hoog wordt. De query language
van CodeQL heeft object-georiénteerde functionaliteit en is
specifiek ontwikkeld om broncode mee te analyseren. Deze taal
heette oorspronkelijk QL en is ontwikkeld door het bedrijfje
Semmle, een spin-off van de Universiteit van Oxford. In 2019 is
Semmle overgenomen door het bedrijf GitHub, dat een jaar eerder
onderdeel van Microsoft geworden was.

CodeQL onderscheidt zich van de meeste andere SAST-tools door
nadruk te leggen op de mogelijkheid voor gebruikers om hun
eigen queries te schrijven. Desondanks is CodeQL ook volledig
geautomatiseerd te gebruiken, vanwege de grote hoeveelheid
beschikbare queries voor klassen van kwetsbaarheden. Het feit
dat gebruikers eigen queries kunnen schrijven maakt CodeQL
verrassend veelzijdig. Naast gebruik als traditionele SAST-tool,
wordt het bijvoorbeeld ook gebruikt als ondersteuning bij hand-
matige codereview, voor het vinden van zogeheten spectre gadgets,
en voor het identificeren van kwaadaardige softwarepakketten.”

Tegenwoordig is de meest populaire manier om CodeQL te
draaien via GitHub’s Code Scanning platform.’® Deze functionali-
teit is gratis voor open source projecten, en kan tegen betaling
aangezet worden op de repositories van klanten van GitHub’s
Cloud omgeving.

" Linton 1984.

2 Hajiyev et al. 2006.

3 https://www.cs.ox.ac.uk/innovation/research-impact/case-semmle.html

" https://github.com/google/security-research/tree/master/pocs/cpus/
spectre-gadgets

' Gobbi & Kinder 2023.

' https://docs.github.com/en/code-security/code-scanning/introduction-to-
code-scanning/about-code-scanning

https://github.com/analysis-tools-dev/static-analysis
https://www.tiobe.com/tiobe-index/
https://codeql.github.com/
https://fbinfer.com/
https://semgrep.dev/
https://snyk.io/product/snyk-code/
https://www.cs.ox.ac.uk/innovation/research-impact/case-semmle.html
https://github.com/google/security-research/tree/master/pocs/cpus/spectre-gadgets
https://github.com/google/security-research/tree/master/pocs/cpus/spectre-gadgets
https://github.com/google/security-research/tree/master/pocs/cpus/spectre-gadgets
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning

CodeQL ondersteunt 10 programmeertalen, waaronder Python,
C++, en Java.” Het heeft ook regels voor codekwaliteit, maar richt
zich met name op kwetsbaarheden die een veiligheidsrisico
vormen. De nieuwheid van CodeQL blijkt met name uit het feit dat
het gebaseerd is op relatief recent academisch onderzoek. CodeQL
heeft ongeveer 8.000 sterren op GitHub. De broncode van de
engine van CodeQL is niet openbaar, maar die van alle queries wel.

Infer. De basis van Infer ligt in separation logic, een formele logica
waarmee je kan redeneren over wat er in het geheugen van een
computer zou gebeuren wanneer die een gegeven programma zou
uitvoeren. Deze logica maakt het mogelijk om los van elkaar
(vandaar separation) over verschillende gedeeltes van het
geheugen te redeneren. Infer wordt ook wel een verification-based
SAST-tool genoemd, omdat het probeert formeel te bewijzen dat
een programma aan bepaalde voorwaarden voldoet (zoals de
afwezigheid van null pointer dereferences). Infer doet dit door een
soort samenvatting te maken van elke procedure van een
programma. Deze samenvatting bestaat onder andere uit
preconditions: voorwaarden die moeten gelden op het moment
dat de procedure wordt aangeroepen. Waar preconditions bij
formele verificatie normaal gesproken door de gebruiker moeten
worden opgesteld, leidt Infer die automatisch af door middel van
een techniek die bi-abductie heet.”®

De ontwikkeling van Infer is terug te voeren tot de uitvinding van
separation logic aan het begin van deze eeuw.” De effectiviteit van
Infer’s voorgangers Smallfoot®° en Spacelnvader® leidde ertoe dat
hun ontwikkelaars in 2009 een bedrijfje genaamd Moinodics
oprichtten. Dit bedrijf werd in 2013 door Meta gekocht, waar Infer
tot op de dag van vandaag in ontwikkeling is. De kracht van Infer
is schaalbaarheid, mogelijk gemaakt door de wortels in separation
logic. Omdat elke procedure afzonderlijk wordt geanalyseerd, is
incrementele analyse met Infer mogelijk. Dat betekent dat Infer
een nieuw stukje toegevoegde code kan scannen, zonder dat het
hele programma opnieuw gescand moet worden.

Infer is gratis en wordt gebruikt door een groot aantal kleine en
grote organisaties, waaronder het Britse NCSC.?

Infer ondersteunt C++, Java en Objective C. Daarnaast is er een
variant, InferSharp, die C# ondersteunt. Infer richt zich voor-
namelijk op problemen op het gebied van memory en concurrency,
die vaak een veiligheidsrisico vormen. Daarnaast kan Infer ook
gebruikt worden om bijvoorbeeld te controleren of de gescande
code aan bepaalde stijlregels voldoet. Ook Infer ontleent

7 https://codeql.github.com/docs/codegl-overview/
supported-languages-and-frameworks/

'® Calcagno et al. 2009.

9 Reynolds 2002.

= Berdine et al. 2006

Calcagno et al. 2009

22 https://results2021.ref.ac.uk/
impact/39476dc8-8346-4bcd-ag32-e70060dgq72ca?Page=1

Onderzoek | NCSC

nieuwigheid aan een oorsprong in academisch onderzoek. Infer
heeft ongeveer 15.000 sterren op GitHub en is transparant, want
het is een open source.

Semgrep OSS. Net als CodeQL, analyseert Semgrep broncode ten
opzichte van regels die gebruikers zelf kunnen opstellen. Ook bij
Semgrep bestaat er een database van standaardregels waarmee
Semgrep als een volledige geautomatiseerde SAST-tool gebruikt
kan worden. Dit onderzoek beperkt zich tot de gratis open source
variant van Semgrep, Semgrep OSS. Er bestaat ook een betaalde
variant met extra functionaliteit.

De regels van Semgrep worden geschreven in een YAML-syntax en
maken veel gebruik van patroonherkenning, vergelijkbaar met de
bekende tool grep. De patroonherkenning wordt bij Semgrep
echter verfijnd door middel van semantische informatie over het
programma. Deze manier van werken is relatief gebruikersvrien-
delijk. Een ander voordeel is dat de code niet gecompileerd hoeft
te worden voor gebruik.

Het bedrijf Semgrep is opgericht in 2017 onder de naam rac.
De tool Semgrep is een opvolger van de tool sgrep, ontwikkeld
door Facebook in 2009.

Semgrep ondersteunt meer dan 35 programmeertalen, waaronder
de gehele top 5 van de TIOBE-index. Ook Semgrep richt zich
vooral op kwetsbaarheden met security impact, maar bevat
daarnaast regels die meer algemene codekwaliteit bewaken.
Semgrep is nieuw, omdat het in z’'n huidige vorm nog geen 10 jaar
bestaat. Het is daarnaast innovatief, omdat het (net als CodeQL)
gebruik maakt van externe regels. Semgrep heeft ongeveer 11.000
sterren op GitHub. De engine en een groot deel van de regels zijn
open source. Een aantal geavanceerde regels is afgeschermd en
alleen te gebruiken tegen betaling.

Hiermee kan de tweede deelvraag worden beantwoord:

DV1.2 Op welke theoretische inzichten zijn de nieuwe tools
gebaseerd?

CodeQL: het zien van code als een database en het gebruik
van een domein-specifieke object-georiénteerde query
language gebaseerd op Datalog.

Infer: separation logic en bi-abductie.

Semgrep: het verfijnen van grep-achtige patroonherkenning
met semantische informatie.

https://results2021.ref.ac.uk/impact/39476dc8-8346-4bcd-a932-e70060d472ca?page=1
https://results2021.ref.ac.uk/impact/39476dc8-8346-4bcd-a932-e70060d472ca?page=1
https://results2021.ref.ac.uk/impact/39476dc8-8346-4bcd-a932-e70060d472ca?page=1

DV1.3: Vergelijking

Om de volgende onderzoeksvraag te beantwoorden worden de
drie geselecteerde tools vergeleken met elkaar en met een meer
gevestigde tool. De keuze voor de gevestigde tool is gevallen op
SonarQube, aangezien uit de uitgevoerde enquéte blijkt dat dit de
meest gebruikte SAST-tool is in Nederland (zie figuur 3). De
meeste artikelen in de literatuur vergelijken niet alle vier de tools,
maar slechts een deel daarvan. Daarom volgen hieronder eerst
paarsgewijze vergelijkingen.

Eerst volgen ter opfrissing de definities van een aantal termen uit
de statistiek. Meldingen van SAST-tools zijn echt positieven als ze
terecht zijn, en foutpositieven als ze onterecht zijn. De afwezigheid
van een melding terwijl er wel degelijk een probleem is heet een
foutnegatieve. Is er geen melding, en ook geen probleem? Dan
spreek je van een echt negatieve. De foutpositievenratio is het aantal
foutpositieven gedeeld door de som van de echt negatieven en de
foutpositieven. In andere woorden: de foutpositievenratio is het
percentage onschuldige code dat ten onrechte als probleem is
gemarkeerd. De echtpositievenratio, foutnegatievenratio, en echtnega-
tievenratio hebben vergelijkbare definities. Tot slot maken
sommige artikelen gebruik van de zogenaamde F1-score.
Daarvoor definieert men eerst de precisie als het aantal echt
positieven gedeeld door de som van het aantal echt positieven en
het aantal foutpositieven. De F1-score is dan het harmonisch
gemiddelde van de precisie en de echtpositievenratio.

SonarQube vs. CodeQL. Een studie uit 2023 van Li et al. vergelijkt
zeven SAST-tools, waaronder SonarQube en CodeQL, door die toe
te passen op Java-programma’s. Op de synthetische OWASP-
benchmark behaalt SonarQube een F1-score van 27%, waar die
van CodeQL 49% is. De auteurs testen dezelfde tools ook op een
door hen zelf samengestelde benchmark bestaande uit echte
kwetsbaarheden in opensourceprogramma’s. Op die benchmark
zijn SonarQube en CodeQL ongeveer even accuraat. Dezelfde
studie vergelijkt de tools ook op snelheid, en vindt dat SonarQube
sneller is dan CodeQL, met name bij grote programma’s (meer dan
50k regels code).

Een andere studie uit 2024 van Li et al. vergelijkt ook zeven
SAST-tools, maar dan op C++-programma’s. Ook daar presteert
CodeQL significant beter dan SonarQube op een synthetische
benchmark (de Juliet Test Suite). In deze studie wordt CodeQL ook
op een echte dataset getest, maar SonarQube niet.

SonarQube vs. Infer. Deze tools worden in verschillende onder-
zoeken vergeleken, te beginnen met een studie uit 2023 van Liu et
al. Die studie richt zich op Javaprogramma’s en vergelijkt
SonarQube en Infer (en nog drie andere tools) qua reikwijdte van
regels, accuraatheid en snelheid. De studie concludeert dat
SonarQube een grotere reikwijdte heeft dan Infer, en dus ook
meer CWE’s detecteert. Echter, binnen de klassen van kwetsbaar-
heden die Infer detecteert, is Infer accurater.

Onderzoek | NCSC

Een andere studie, van Algaradaghi & Kozsik uit 2022, vergelijkt
SonarQube en Infer specifiek wat betreft de detectie van null
pointer dereferences in Javaprogramma’s. Het resultaat is dat de
echtpositievenratio van Infer marginaal hoger is dan die van
SonarQube, en de foutpositievenratio van SonarQube substantieel
hoger dan die van Infer.

Tot slot is er een masterscriptie van Ablasser uit 2019. Deze neemt
de echtpositievenratio en foutpositievenratio in beschouwing en
concludeert dat Infer accurater is dan SonarQube op zowel
programma’s geschreven in C++ als op programma’s geschreven
inJava.

SonarQube vs. Semgrep OSS. Bij de eerdergenoemde studie van
Li et al. uit 2023 wordt ook Semgrep meegenomen. Op de
synthetische OWASP-benchmark is de F1-score van Semgrep 80%
(en die van SonarQube 27%). Op de zelf samengestelde bench-
mark met echte programma’s is Semgrep ongeveer even accuraat
als SonarQube. Semgrep is iets minder snel dan SonarQube.
Interessant genoeg wordt de snelheid van Semgrep nauwelijks
beinvloed door de grootte van het gescande project; dat komt
omdat Semgrep verschillende delen van het project parallel scant.

De eerdergenoemde studie van Liu et al. uit 2023 bekijkt ook
Semgrep. De reikwijdte van Semgrep is minder groot dan die

van SonarQube (18 CWE-categorieén vs. 28 CWE-categorieén).

De accuraatheid van Semgrep blijkt in deze studie een stuk minder
groot dan die van SonarQube. Dat is in ieder geval gedeeltelijke

te verklaren door het feit dat Semgrep sommige klassen van
kwetsbaarheden niet ondersteunt. Deze studie bevestigt dat
Semgrep minder snel is dan SonarQube en dat de snelheid van
Semgrep nauwelijks beinvioed wordt door de grootte van het
gescande project. Een derde studie die zowel SonarQube als
Semgrep heeft getest is de eerdergenoemde studie van Li et al. uit
2024. Op de synthetische Juliet Test Suite is Semgrep significant
accurater dan SonarQube.

CodeQL vs. Infer. De enige gevonden studie die zowel CodeQL als
Infer test is die van Mantovani et al. uit 2022. Op een beperkte
dataset van echte programma’s, slaagt CodeQL erin om g van de
10 kwetsbaarheden te detecteren, waar Infer er slechts 2 van de 10
detecteert. Het moet hierbij wel worden benoemd dat de auteurs
eigen CodeQL queries hebben toegevoegd die op maat zijn
gemaakt voor de gevonden kwetsbaarheden.

CodeQL vs. Semgrep OSS. De twee studies die zowel CodeQL als
SonarQube bekijken, bekijken ook Semgrep.

Bij de studie van Li et al. uit 2023 is op de synthetische benchmark
de F1-score van CodeQL 49% en die van Semgrep 80%. Op de
benchmark met echte programma'’s zijn SonarQube en Semgrep
ongeveer even accuraat. CodeQL is sneller op relatief kleine
programma’s (< 50k coderegels), en Semgrep is sneller op relatief
grote programma’s.

Uit studie van Li et al. uit 2024 blijkt dat CodeQL accurater is dan
Semgrep op de synthetische Juliet Test Suite.

Eris nog een niet eerdergenoemde studie die zowel CodeQL en
Semgrep vergelijkt, namelijk die van Bennett et al. uit 2024. Deze
studie test 8 tools op de SAP-database, die bestaat uit handmatig
geselecteerde open source Java-programma’s met bekende
kwetsbaarheden. CodeQL en Semgrep detecteren ongeveer
evenveel van deze kwetsbaarheden (beide zo’n 15%). Door op
maat gemaakte regels toe te voegen aan Semgrep, slaagden de
auteurs erin de detectiegraad van Semgrep op deze dataset te
verhogen tot 44,7%. Het is daarbij natuurlijk wel de vraag of die
regels ook breder toepasbaar zijn dan alleen op deze dataset.

Infer vs. Semgrep OSS. Bij de enige gevonden studie die beide
tools bekijkt, die van Liu et al. uit 2023, detecteren zowel Infer als
Semgrep zeer weinig kwetsbaarheden. Dit komt waarschijnlijk
doordat de kwetsbaarheden in de benchmarks die bij deze studie
gebruikt worden vooral kwaliteit gerelateerd zijn in plaats van
specifiek security gerelateerd. Qua reikwijdte scoren Infer en
Semgrep ongeveer even hoog. Deze studie observeert dat Infer
sneller is dan Semgrep, behalve bij zeer grote projecten (> 100k
coderegels).

Hiermee kan de derde deelvraag worden beantwoord:

DV1.3 Hoe verhouden deze tools zich tot elkaar en tot meer

gevestigde tools?

« Inferis accurater dan SonarQube, maar op een nauwere
selectie aan CWE'’s.

- Wat betreft kwetsbaarheden die een veiligheidsrisico
vormen, zijn Semgrep OSS en CodeQL accurater dan
SonarQube.

+ SonarQube is accurater dan de nieuwe tools als het gaat
om algemene problemen met codekwaliteit.

« CodeQL is over het algemeen iets accurater dan
Semgrep OSS.

» SonarQube is sneller dan zowel CodeQL als Semgrep OSS.

 Op relatief kleine projecten zijn CodeQL en Infer sneller dan
Semgrep OSS, maar op grotere projecten geldt het
omgekeerde.

Onderzoek | NCSC

DV2.1: Ervaringen ontwikkelaars

Eris behoorlijk veel onderzoek gedaan naar de ervaringen van
ontwikkelaars bij het gebruik van SAST-tools. In de afgelopen jaren
zijn er twee artikelen verschenen die door middel van systema-
tisch literatuuronderzoek een overzicht geven van deze resultaten.

Nachtigall et al. (2022) destilleert uit de literatuur de volgende zes
bruikbaarheidscriteria. In het artikel wordt elk criterium nog
verder onderverdeeld in verschillende subcriteria.

1. Meldingen: een SAST-tool moet informatieve meldingen geven
op basis waarvan een gebruiker actie kan ondernemen.

2. Oplossingshulp: het blijkt uit de literatuur dat ontwikkelaars
graag hulp van een SAST-tool krijgen bij het oplossen van een
gesignaleerd probleem.

3. Foutpositieven: één van de meest belangrijke obstakels bij het
gebruik van SAST-tools is het hoge aantal gerapporteerde
foutpositieven. Een SAST-tool moet dit op een bepaalde
manier mitigeren. Bijvoorbeeld door een bepaalde betrouw-
baarheid score toe te kennen aan een melding, of door
gebruikers foutpositieven handmatig te laten onderdrukken.

q. Gebruikersfeedback: SAST-tools moeten gebruikers de
mogelijkheid bieden om feedback te geven aan de tool. Dit kan
bijvoorbeeld door de regels aanpasbaar te maken, of door
gebruikers meldingen te laten filteren.

5. Workflow integratie: SAST-tools moeten makkelijk te integre-
ren zijn in de workflow van de gebruiker. Afhankelijk van de
specifieke gebruiker kan dit op meerdere manieren: in de IDE,
in de Cl/CD-pijplijn, of als standalone tool. Idealiter onder-
steunt een tool meerdere workflows.

6. Interface: een SAST-tool moet een interface hebben die goed
gebruik stimuleert. Bijvoorbeeld door coderegels waarvoor een
melding geldt op te laten lichten in de IDE. Of door een
overzicht te geven van welke meldingen al zijn opgelost en
welke nog open staan.

De studie van Nachtigall et al. evalueert 46 tools aan de hand van
deze criteria, waaronder Semgrep 0SS en InferSharp (een variant
van Infer). CodeQL en Infer worden niet meegenomen in de
vergelijking; tot CodeQL konden de auteurs geen toegang krijgen,
en bij Infer hadden de auteurs problemen met installeren. Om een
eerlijke vergelijking te maken worden in dit rapport voor de
beantwoording van DV2.2 alle drie de tools opnieuw tegen het
licht gehouden.

De andere recente studie die een overzicht geeft van gebruikers-
ervaringen met SAST-tools is Wadhams et al. (2024). Via een
systematisch literatuuronderzoek, waarin 89 relevante artikelen
zijn bestudeerd, identificeert deze studie vijf obstakels bij het
gebruik van SAST-tools. Deze vijf obstakels zijn, op volgorde van
meest tot minst voorkomend in de literatuur:

1. Veel foutpositieven

Slechte presentatie van output

Tijdrovend om op te zetten

. Te weinig hulp bij het oplossen van meldingen

Slechte workflow integratie

Ve oW

Daarnaast noemt de studie ook het gebrek aan aanpasbaarheid
van SAST-tools als een belangrijk obstakel.

Door de bevindingen van de twee genoemde overzichtsartikelen
met elkaar te combineren vormt zich het volgende antwoord op
DVa.1:

DV2.1 Wat zijn de belangrijkste obstakels die ontwikke-
laars ervaren bij het gebruik van ASAT’s?

-

Te veel foutpositieven

Onvoldoende informatieve meldingen

Te weinig hulp bij het oplossen van meldingen
Onvoldoende workflow integratie

Gebrek aan incorporatie van gebruikersfeedback

Ve W

DV2.2: Adressering obstakels door nieuwe tools

De vijf geidentificeerde obstakels worden één voor één besproken.

Elk obstakel wordt opgedeeld in verschillende subobstakels, en bij
elk subobstakel wordt per SAST-tool handmatig een inschatting
gemaakt of die het subobstakel niet, gedeeltelijk, of helemaal
adresseert.

Foutpositieven

Percentage foutpositieven

Uit verschillende van de eerder besproken onderzoeken blijkt dat
de nieuwe tools accurater zijn dan het gevestigde SonarQube. Dat
betekent echter nog niet noodzakelijk dat die tools ook minder
foutpositieven opleveren.

In Ami et. al (2024) wordt door middel van interviews met 20
gebruikers onderzocht hoe zij SAST-tools ervaren. Daarbij komt
ook de vraag aan bod welk percentage van foutpositieven deze
gebruikers kunnen tolereren. De studie concludeert dat, waar de
in de literatuur vaak een grens van 20% wordt genoemd, de door
hun geinterviewde gebruikers ook een hoger aantal zouden
tolereren, soms tot wel 80%.

De studie Shen et al. (2023) past CodeQL toe op verschillende
open source embedded softwareprojecten. Uit een door de
auteurs uitgevoerde handmatige analyse blijkt dat 23% foutposi-
tieven oplevert. De eerdergenoemde Li et al. (2023) en Li et al.
(2024) vinden een foutpositievenratio van respectievelijk 60% (op
de OWASP-benchmark) en 23% (op de Juliet Test Suite). Met een
gemiddeld percentage foutpositieven van ongeveer 35%, kan
worden gezegd dat CodeQL dit obstakel gedeeltelijk adresseert.

Onderzoek | NCSC

In Kharkar (2022) wordt door middel van machine learning het
aantal foutpositieven van Infer gereduceerd. Het meest succesvol-
le model slaagt erin om dit terug te brengen tot 14,6%. Zonder
enige toevoegingen is het percentage foutpositieven van Infer
volgens deze studie al 27,3%. Dit is voldoende om te concluderen
dat Infer dit obstakel geheel adresseert.

Bij Li et al. (2023) en Li et al. (2024) is het percentage foutpositie-
ven van Semgrep respectievelijk 30% en 68%, met een gemiddeld
percentage van 49% kan worden gezegd dat Semgrep dit obstakel
gedeeltelijk addreseert.

Betrouwbaarheidsscore

Uit eerder onderzoek blijkt dat gebruikers beter met foutpositieven
om kunnen gaan als een SAST-tool een betrouwbaarheidsscore
toekent aan waarschuwingen. Dit doet CodeQL niet, Infer ook
niet, en Semgrep geheel.

Informatieve meldingen

Transparante redeneringen

Een melding is beter te begrijpen als het mogelijk is om te
achterhalen op basis van welke redenering een SAST-tool die
melding geeft. Bij Infer is dit bij de meeste meldingen niet het
geval. Voor Semgrep en CodeQL geldt dat elke melding gemaakt
wordt op basis van een publiek beschikbare regel. Aangezien die
regels bij CodeQL soms moeilijk te begrijpen zijn, is de inschatting
dat CodeQL dit obstakel gedeeltelijk adresseert. De regels van
Semgrep zijn beter te begrijpen, dus die tool adresseert dit
obstakel geheel.

Pad omschrijving

Een significant deel van de kwetsbaarheden ontstaat doordat
onbetrouwbare input (ook wel de source genoemd) een weg maakt
door het programma naar een kwetsbare functie (die noemt men
dessink). Een melding van dit soort kwetsbaarheden is informatiever
op het moment dat had pad van de source naar de sink expliciet
wordt gemaakt. Alle drie de beschouwde tools doen dit geheel.

Extra informatie (bijvoorbeeld via links)

Een melding wordt ook informatiever als de gebruiker extra
informatie kan krijgen, bijvoorbeeld via een link. Bij alle drie de
beschouwde tools is er online uitgebreide informatie te vinden
over alle specifieke meldingen. Ze adresseren dit obstakel
daarmee geheel.

Ernst

Een andere manier waarop een melding informatief kan zijn, is
door de ernst te classificeren. Hiermee kunnen gebruikers
meldingen prioriteren. Zowel CodeQL als Semgrep doen dit
geheel, terwijl Infer het niet doet.

Hulp bij het oplossen van meldingen

Autofix

Idealiter bieden tools de mogelijkheid om meldingen automatisch
te verhelpen. Dit vergroot namelijk de kans dat ontwikkelaars ook
daadwerkelijk iets met de meldingen doen. CodeQL maakt het
sinds kort mogelijk om meldingen automatisch te verhelpen door
middel van de Al-assistent Copilot. Daarmee adresseert CodeQL
dit obstakel geheel. Bij Semgrep is het mogelijk om een fix toe te
voegen aan een regel. Aangezien lang niet alle regels van deze
mogelijkheid gebruik maken, adresseert Semgrep dit obstakel
gedeeltelijk. Infer, tot slot, biedt geen autofix voorziening en
adresseert dit obstakel daarom niet.

Workflow integratie

Prioritering

Het helpt als de meldingen op een geprioriteerde manier aan de
gebruiker worden getoond. Bij CodeQL is dit het geval in de
webinterface. De CLI-applicatie kan de resultaten in verschillende
formaten uitdraaien, waaronder het SARIF-formaat, dat prioritering
faciliteert. De IDE-versie van CodeQL is meer bedoeld om individuele
queries te draaien en te testen, waarbij prioritering minder
relevantis. Al met al is het oordeel dat CodeQL dit obstakel geheel
adresseert. Semgrep OSS en Infer adresseren dit obstakel niet.

IDE-integratie

Vrijwel alle ontwikkelaars schrijven hun code in een IDE. Het is
daarom heel nuttig als een SAST-tool in de IDE geintegreerd kan
worden. Dit geldt voor alle drie de tools geheel.

CLI

Naast gebruik in de IDE, is het nuttig als een SAST-tool de
mogelijkheid biedt om vanuit de command line uitgevoerd te
worden. Hiermee worden dingen als integratie met andere tools
en gebruik op afstand makkelijker om te implementeren. Alle drie
de tools ondersteunen gebruik in de command line geheel.

Snelheid

Om de workflow van een ontwikkelaar zo min mogelijk te storen,
is het van belang dat een tool niet te langzaam is. Op basis van
persoonlijke ervaring van de auteur en de literatuur is de bevinding
dat CodeQL dit obstakel niet adresseert, Infer geheel en Semgrep
gedeeltelijk.

Onderzoek | NCSC

Gebruikersfeedback

Aanpasbare regels

Aanpasbare regels bieden verschillende voordelen. Het stelt
gebruikers bijvoorbeeld in staat om een tool te kalibreren naar
hun codebase en regels te gebruiken uit de gemeenschap. CodeQL
en Semgrep ondersteunen dit geheel. Bij Infer is het ook mogelijk
om zogeheten checkers te schrijven, maar dat is minder makkelijk
en ook minder gebruikelijk. Daarom ondersteunt Infer dit
gedeeltelijk.

Gebruikersfeedback echt positieven

SAST-tools kunnen hun accuraatheid verbeteren door te leren van
gebruikersfeedback over echt positieven. De drie bekeken tools
ondersteunen dit allen niet.

OnderdrukRing

Het is belangrijk dat gebruikers bepaalde meldingen kunnen
onderdrukken, zodat ze zich kunnen richten op meldingen die
belangrijker zijn. Alle drie de tools ondersteunen dit geheel.

Filtering

Het kan nuttig zijn om meldingen te kunnen filteren op bijvoor-
beeld het type kwetsbaarheid, of de ernst van een melding.
CodeQL en Infer ondersteunen dit geheel en Semgrep onder-
steunt dit niet.

DV2.2 In hoeverre worden deze obstakels geadresseerd
door de nieuwe tools?

Zie tabel 1 voor een volledig overzicht van de handmatige
inschatting.

Figuur1 functies respondenten

Overige

Project Manager N Software Engineer

IT/Infrastructure
Manager

Compliance —
Officer
Architect Security Engineer
Information .
Security Officer DevOps Engineer

Tabel 1 overzicht van de (deel)obstakels en de inschatting van de mate waarin de
geselecteerde tools die adresseren: niet (-), gedeeltelijk (+) of geheel (+). C staat voor
CodeQL, I staat for Infer, en S staat voor Semgrep OSS.

cl S
Vals-positieven
Percentage vals-positieven + o+ %
Betrouwbaarheidsscore - -+
Informatieve meldingen
Transparante redeneringen + o+
Pad omschrijving + o+ o+
Extra informatie (bijvoorbeeld via links) + o+ o+
Ernst + -+
Hulp bij het oplossen van meldingen
Autofix - 2
Workflow integratie
Prioritering + - -
IDE-integratie + o+ o+
CLI + o+ o+
Snelheid -+ 2
Gebruikersfeedback
Aanpasbare regels + o+ o+
Gebruikersfeedback echtpositieven - - -
Onderdrukking + o+ o+
Filtering + o+ -

DV3.1 & DV3.2: Enquéteresultaten

Om de derde deelvraag te beantwoorden is er via verschillende
kanalen een enquéte uitgezet bij de doelgroepen van het NCSC.
Er zijn 44 respondenten. In Figuur 1 en Figuur 2 is te zien hoe de
respondenten verdeeld zijn over functies en sectoren. Ongeveer
de helft van de respondenten werkt als softwareontwikkelaar. De
rest heeft een rol met verantwoordelijkheid over het proces, zoals
Information Security Officer. De best gepresenteerde sectoren zijn
de publieke sector, de financiéle sector, en de IT-sector. lets meer

dan driekwart van de respondenten werkt in één van die sectoren.

Onderzoek | NCSC

Figuur 2 sectoren respondenten

Consultancy
Telecommunications
Energie \ |

Luchtvaart/defensie

Financiéle sector
Transport -

Publieke sector

De respondenten is gevraagd met welke SAST-tools ze ervaring
hebben, en welke ze tegenkomen in hun huidige werk. Zie figuren
3 en g voor een volledig overzicht van de antwoorden.

Wat betreft gebruik van de nieuwe tools, blijkt dat van de g4
respondenten er o ervaring hebben met Infer, ¢ met CodeQL
(waarvan1in de huidige functie) en 5 met Semgrep (waarvan 4 in
de huidige functie). Ter vergelijking: 32 respondenten hebben
ervaring met SonarQube (waarvan 25 in de huidige functie).

Het is ook interessant om deze resultaten te vergelijken met een
recent onderzoek van Bennet et al. uit 2024. Het aandeel van hun
respondenten dat SonarQube gebruikt (59%) is ongeveer even
groot als dat van ons (57%), terwijl hun aandeel CodeQL-
gebruikers (25%) en Semgrep-gebruikers (17%) een stuk groter zijn
dan dat van ons (resp. 2% en 9%). Een ander interessant verschil is
dat er onder onze respondenten relatief veel gebruikers van
Checkmarx en Fortify zijn, terwijl die tools bij Bennet et al. buiten
de top 7 vallen.

Op basis hiervan kan de eerste deelvraag van vraag 3 worden
beantwoord:

DV3.1 Gebruiken Nederlandse organisaties de nieuwe
tools?

Op basis van de enquéte kan geconcludeerd worden dat de
nieuwe tools nog zeer weinig worden gebruikt bij
Nederlandse organisaties. Dat staat in contrast met de
bevindingen van Benett et al. (2024), die onder wereldwijde
respondenten een groter aantal CodeQL- en Semgrep-
gebruikers aantreffen.

De volgende deelvraag gaat over welke tools geschikt zijn voor
welke organisaties. Er valt een aantal observaties te maken.

Voor de meeste organisaties is de belangrijkste reden om
SAST-tools te gebruiken het detecteren van security bugs.

Zie figuur 5 voor een overzicht van waar de respondenten de
SAST-tools voor gebruiken. Daaruit blijkt dat het vinden van
security bugs de belangrijkste reden is om SAST-tools te gebruiken.
Aan de ene kant is dit opvallend, omdat SAST-tools vaak ook meer
functionaliteit bieden, zoals stimuleren van een uniforme
codestijl. Aan de andere kant is het begrijpelijk dat ontwikkelaars
kwetsbaarheden in hun code nég liever willen voorkomen dan
andere kwaliteitsproblemen. In figuur 6 is te zien dat ditzelfde
beeld ook binnen specifieke sectoren geldt.

Bij de meeste sectoren, maar niet bij de publieke sector, zijn
SAST-tools een belangrijker middel om security bugs te
detecteren dan handmatige codereview en pentests.

Zie figuur 6. Van bijvoorbeeld de IT-sector, vindt 100% het gebruik
van SAST-tools belangrijk of zeer belangrijk voor het detecteren
van security bugs, terwijl dat respectievelijk 89% en 67% is voor
handmatige codereview en pentests. Dit bevestigt dat SAST een
zeer belangrijk middel is voor organisaties om kwetsbaarheden te
detecteren.

De respondenten uit de IT-sector en de financiéle sector ervaren
minder obstakels bij het gebruik van SAST-tools dan die uit de
publieke sector en de overige sectoren.

Zie figuur 8. Met name bij workflow integratie is het percentage
respondenten dat dat een aanzienlijk obstakel vindt, of vindt dat
dat SAST-tools onbruikbaar maakt, in de financiéle sector (38%)
en de IT-sector (44%) veel kleiner dan in de publieke sector (77%)
en de overige sectoren (78%). Dit zou kunnen betekenen dat de
publieke sector van de andere sectoren kan leren op het gebied
van SAST-tools.

DV3.2: Welke tools zijn geschikt voor welke organisaties?

Aangezien Infer een kleinere klasse van kwetsbaarheden
detecteert, valt het hoe dan ook aan te raden om naast Infer
ook een andere SAST-tool te gebruiken. Met het oog op
workflow integratie is het wellicht te overwegen om CodeQL
te gebruiken wanneer je code op GitHub is gehost, en
Semgrep te gebruiken wanner je code op GitLab is gehost.

Onderzoek | NCSC

Figuur 3 ervaringen respondenten met verscheidene SAST-tools

sonarqube |
Checkmarx _
Fortify | NN
Snyk Code _
Semgrep -
Coverity Scan -
CodeQL -
Veracode -
cargo-deny .
FindBugs/SpotBugs .
sigrid [l
clippy [l
Overige _
0 5 10 15 20 25 30 35

Aantal gebruikers

Figuur g ervaringen respondenten met verscheidene SAST-tools in huidige functie

Sonarqube
Checkmarx _
semgrep [N

Fortify |
snyk Code [N

sigrid |

overice
0 5 10 15 20 25

Aantal gebruikers

12

Onderzoek | NCSC

Figuur 5 belang gebruik van SAST-tools door respondenten voor verschillende doeleinden

Performance

Stijl en structuur

Security-ongerelateerde bugs

Afhankelijkheden

Security bugs

0 10 20 30 40 50

B Zeer belangrijk B Belangrijk Enigszins belangrijk Onbelangrijk

Figuur 6 voor zowel SAST als handmatige codereviews hebben de respondenten aangegeven of ze dat niet belangrijk, enigszins belangrijk, belangrijk of zeer belangrijk vinden
voor het detecteren van problemen op het gebied van performance, security-ongerelateerde bugs, security bugs, afhankelijRheden, en stijl en structuur. Naar het belang van
penetration tests is alleen gevraagd op het gebied van security bugs. Deze heatmap geeft per sector het percentage van respondenten dat een onderdeel 6f belangrijk, 6f zeer
belangrijk vindt.

Publieke sector 46%

Financiéle sector a6% 54%

56%

Overige | 560, 22%
S S
§ &
o“@ &
QQ’{\ ®

Onderzoek | NCSC

Figuur 7 obstakels bij het gebruik van SAST-tools

Gebrek aan aanpasbaarheid

Te veel foutnegatieven

Niet iteratief te gebruiken

Te veel waarschuwingen

Gebrek aan workflowintegratie

Te veel foutpositieven

0 10 20 30 40 50

B Het maaktze onbruikbaar] Een aanzienlijk obstakel Een gering obstakel Geen obstakel

Figuur 8 heatmap van percentage minstens aanzienlijk obstakel per sector en onderdeel

Publieke sector

Financiéle sector

Overige

Conclusies en adviezen

In dit hoofdstuk worden een aantal concrete adviezen gegeven
voor hoe Nederlandse organisaties nieuwe SAST-tools tot hun
voordeel kunnen aanwenden.

Gebruik SAST-tools

SAST-tools zijn volgens de respondenten van de enquéte een zeer
belangrijk middel om kwetsbaarheden te detecteren. Het is dan
ook alle organisaties aan te raden om SAST-tools te gebruiken.

Experimenteer met nieuwe tools

Nieuwe tools lijken op verschillende vlakken beter te presteren
dan gevestigde tools. Voor elke van de drie in dit rapport
besproken nieuwe tools geldt dat ze gratis uit te proberen zijn.
Het is voor Nederlandse organisaties de moeite waard om met
nieuwe tools te experimenteren om te kijken of ze ook in hun
specifieke situatie een verbetering vormen ten opzichte van de
status quo. Dat hoeft natuurlijk niet beperkt te blijven tot de tools
in dit rapport. De ontwikkelingen gaan snel, en voor sommige
organisaties zijn gespecialiseerde tools geschikter.

Gebruik meerdere tools

Uit verschillende onderzoeken, waaronder Bennet et al. (2024),
blijft dat SAST-tools elkaar aanvullen: de één detecteert fouten die
de andere niet ziet en vice versa. Voor optimale dekking valt het
dus aan te raden om meerdere tools tegelijkertijd te gebruiken.

Schrijf eigen regels, of configureer SAST-tools naar de eigen organisatie
Twee nieuwe SAST-tools, CodeQL en Semgrep, onderscheiden
zich door aanpasbare regels te gebruiken. Uit verschillende
onderzoeken blijkt dat deze tools nog effectiever zijn als de regels
aangepast zijn aan de organisatie waar ze worden toegepast.

Het is de moeite waard om binnen een organisatie kennis op te
bouwen over hoe deze regels worden geschreven. Ook bij
SAST-tools die geen aanpasbare regels ondersteunen is het
verstandig om te kijken hoe die optimaal geconfigureerd kunnen
worden naar de eigen organisatie.

Kennisuitwisseling tussen organisaties uit verschillende Nederlandse
sectoren kan het gebruik van SAST-tools verbeteren

Uit de enquéteresultaten blijkt dat respondenten uit de IT-sector
en de financiéle sector minder obstakels ervaren bij het gebruik
van SAST-tools dan die uit de publieke sector. Het zou goed zijn als
er meer kennisuitwisseling zou zijn, zodat bijvoorbeeld de
publieke sector op dit gebied van de andere sectoren kan leren.
Het zou ook interessant zijn om beter te begrijpen waarom de
publieke sector de enige sector is waarin pentests en handmatige
codereview even belangrijk zijn voor het detecteren van kwets-
baarheden als SAST-tools.

Onderzoek | NCSC

Discussie en vervolg

Een belangrijk gebrek van dit onderzoek is dat de enquéte
waarschijnlijk slechts is ingevuld door mensen die met SAST-tools
werken. Dit zou een vertekend beeld kunnen geven. In een
vervolgstudie zou het daarom interessant zijn om ook expliciet
softwareontwikkelaars te bevragen die geen SAST-tools gebruiken.

Het is ook belangrijk om te vermelden dat de kosten van de
vergeleken SAST-tools niet in beschouwing genomen zijn. In de
praktijk spelen die natuurlijk wel een rol bij de beslissing van een
organisatie om een SAST-tool te gebruiken. Het Amerikaanse
agentschap CISA heeft recentelijk gesignaleerd dat er onvoldoende
empirische data is over de kosteneffectiviteit van de best practices
op het gebied van veilige softwareontwikkeling.z

Een andere omissie van dit onderzoek is dat het zich specifiek op
statische analyse richt, en weinig vergelijkingen maakt met andere
manieren om software te testen. Bij de enquéte is respondenten
wel gevraagd naar hun ervaringen met handmatig testen en
pentesten (zie figuur 6), maar specifiek niet naar dynamische
analyse. Bij vervolgonderzoek zou het nuttig zijn om ook het
gebruik van dynamische analyse onder deze doelgroep in kaart

te brengen.

Van de g4 respondenten hebben er 20 hun mailadres achter-
gelaten, omdat ze open staan om aan een vervolgstudie deel te
nemen. Deze vervolgstudie zou zich kunnen richten op de
vooralsnog onbeantwoorde DV 3.3: welke problemen kunnen
ontstaan bij de implementatie van deze tools? Deze studie zou
de vorm kunnen hebben van interviews, maar ook bijvoorbeeld
een case study waarin nieuwe tools bij een organisatie worden
geimplementeerd.

3 https://www.cisa.gov/sites/default/files/2024-10/CSAC_October-Quarterly-
Meeting_SBD-Recommendations_20241011_508.pdf

https://www.cisa.gov/sites/default/files/2024-10/CSAC_October-Quarterly-Meeting_SBD-Recommendations_20241011_508.pdf
https://www.cisa.gov/sites/default/files/2024-10/CSAC_October-Quarterly-Meeting_SBD-Recommendations_20241011_508.pdf

Literatuur

Ablasser, M. (2019). Effectiveness of Verification Tools [Master’s thesis,
TU Graz].

Algaradaghi, M., & Kozsik, T. (2022). Inferring the Best Static
Analysis Tool for Null Pointer Dereference in Java Source Code.
Proceedings http://ceur-ws.org ISSN, 1613, 0073.

Ami, A. S., Moran, K., Poshyvanyk, D., & Nadkarni, A. (2024).
“False negative-that one is going to kill you”: Understanding
Industry Perspectives of Static Analysis based Security Testing. In
2024 IEEE Symposium on Security and Privacy (SP) (pp. 3979-3997). IEEE.

Bennett, G., Hall, T., Winter, E., & Counsell, S. (2024). Semgrep*:
Improving the limited performance of static application security
testing (SAST) tools. In Proceedings of the 28th International Conference
on Evaluation and Assessment in Software Engineering (pp. 614-623).

Berdine, J., Calcagno, C., & O’Hearn, P. W. (2006). Smallfoot:
Modular automatic assertion checking with separation logic. In
Formal Methods for Components and Objects: 4th International
Symposium, FMCO 2005, Amsterdam, The Netherlands, November 1-4,
2005, Revised Lectures 4 (pp. 115-137). Springer Berlin Heidelberg.

Calcagno, C., Distefano, D., O'Hearn, P, & Yang, H. (2008). Space
invading systems code. In International Symposium on Logic-Based
Program Synthesis and Transformation (pp. 1-3). Berlin, Heidelberg:
Springer Berlin Heidelberg.

Calcagno, C., Distefano, D., O’'Hearn, P, & Yang, H. (2009).
Compositional shape analysis by means of bi-abduction. In
Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages (pp. 289-300).

Gobbi, M. F, & Kinder, J. (2023). Poster: Using CodeQL to Detect
Malware in npm. In Proceedings of the 2023 ACM SIGSAC
Conference on Computer and Communications Security (pp.

3519-3521).

Hajiyey, E., Verbaere, M., & De Moor, O. (2006). Codequest:
Scalable source code queries with datalog. In ECOOP 2006— Object-
Oriented Programming: 2oth European Conference, Nantes, France, July
3-7,2006. Proceedings 20 (pp. 2-27). Springer Berlin Heidelberg.

Onderzoek | NCSC

Kharkar, A., Moghaddam, R. Z., Jin, M, Liu, X., Shi, X., Clement, C.,
& Sundaresan, N. (2022). Learning to reduce false positives in
analytic bug detectors. In Proceedings of the ga4th International
Conference on Software Engineering (pp. 1307-1316).

Li, K., Chen, S., Fan, L., Feng, R., Liu, H., Liu, C,, ... & Chen, Y. (2023).
Comparison and Evaluation on Static Application Security Testing
(SAST) Tools for Java. In Proceedings of the 315t ACM Joint European
Software Engineering Conference and Symposium on the Foundations of
Software Engineering (pp. 921-933).

Li, Z., Liu, Z., Wong, W. K., Ma, P,, & Wang, S. (2024). Evaluating
C/C++ Vulnerability Detectability of Query-Based Static
Application Security Testing Tools. IEEE Transactions on Dependable
and Secure Computing.

Linton, M. A. (1984). Implementing relational views of programs.
ACM SIGSOFT Software Engineering Notes, 9(3), 132-140.

Liu, H., Chen, S., Feng, R,, Liu, C,, Li, K., Xu, Z., ... & Chen, Y. (2023).
A comprehensive study on quality assurance tools for java. In
Proceedings of the 32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis (pp. 285-297).

Mantovani, A., Compagna, L., Shoshitaishvili, Y., & Balzarotti, D.
(2022). The Convergence of Source Code and Binary Vulnerability
Discovery--A Case Study. In Proceedings of the 2022 ACM on Asia
Conference on Computer and Communications Security (pp. 602-615).

Nachtigall, M., Schlichtig, M., & Bodden, E. (2022). A large-scale
study of usability criteria addressed by static analysis tools. In
Proceedings of the 31st ACM SIGSOFT International Symposium on
Software Testing and Analysis (pp. 532-543).

Reynolds, J. C. (2002). Separation logic: A logic for shared mutable
data structures. In Proceedings 17th Annual IEEE Symposium on Logic in
Computer Science (pp. 55-74). |EEE.

Shen, M., Pillai, A., Yuan, B. A., Davis, J. C., & Machiry, A. (2023).
An Empirical Study on the Use of Static Analysis Tools in

Open Source Embedded Software. arXiv preprint arXiv:2310.00205.

Wadhams, Z. D., Izurieta, C., & Reinhold, A. M. (2024). Barriers to
Using Static Application Security Testing (SAST) Tools: A Literature
Review. In Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering Workshops (pp. 161-166).

http://ceur-ws.org

Uitgave

Nationaal Cyber Security Centrum (NCSC)
Postbus 117, 2501 CC Den Haag
Turfmarkt 147, 2511 DP Den Haag

0707515555

Meer informatie
www.ncsc.nl
info@ncsc.nl
@ncsc_nl

Augustus 2025

http://www.ncsc.nl
mailto:info%40ncsc.nl?subject=

	Samenvatting
	Inleiding
	Deelvragen en methode
	Deelvraag 1: wat zijn de nieuwe ontwikkelingen in statische analyse?
	Deelvraag 2: in hoeverre adresseren deze nieuwe ontwikkelingen de behoeften van ontwikkelaars?
	Deelvraag 3: hoe kunnen de nieuwe tools bijdragen aan de veiligheid van in Nederland ontwikkelde software?
	DV1.1: Toolselectie
	DV1.2: De geselecteerde tools
	DV1.3: Vergelijking
	DV2.1: Ervaringen ontwikkelaars
	
DV2.2: Adressering obstakels door nieuwe tools
	DV3.1 & DV3.2: Enquêteresultaten

	Conclusies en adviezen
	Discussie en vervolg
	Literatuur

