
Nieuwe ontwikkelingen in 
statische analyse
Onderzoeksrapport
Jan Rooduijn



Onderzoek | NCSC

2

Static application security testing (SAST) is een methode om automatisch kwetsbaarheden in software te 

ontdekken zonder die software te draaien. Het gebruik van SAST-tools wordt door vrijwel alle richtlijnen voor 

veilige softwareontwikkeling voorgeschreven. Maar hoe maak je een keuze uit de grote verscheidenheid aan 

beschikbare SAST-tools? En hoe waardeer je de bewering van ontwikkelaars van moderne tools dat die 

effectiever zouden zijn dan meer gevestigde tools? Tegen welke obstakels lopen ontwikkelaars in de praktijk 

aan bij het gebruik van SAST-tools? Dit onderzoek heeft als doel om Nederlandse softwareontwikkelaars verder 

te helpen bij het beantwoorden van deze vragen.

Samenvatting

De hoofdvraag van dit onderzoek luidt: hoe kunnen Nederlandse 
organisaties profiteren van nieuwe ontwikkelingen in statische 
analyse? Eerst zijn op basis van een aantal criteria drie nieuwe 
SAST-tools geselecteerd: CodeQL, Infer en Semgrep. Deze tools 
zijn vergeleken met de meer gevestigde tool SonarQube. 
De belangrijkste resultaten zijn:
	• Zowel CodeQL als Semgrep ondersteunt het schrijven van eigen 

detectieregels. Deze nieuwe ontwikkeling biedt verschillende 
voordelen. Organisaties kunnen bijvoorbeeld profiteren van 
detectieregels die worden bijgedragen door derde partijen. 
Eigen regels maken het ook makkelijker om SAST-tools 
optimaal te benutten door ze specifiek te configureren naar de 
eigen organisatie.

	• Uit verschillende vergelijkingen in de academische literatuur 
blijkt dat de nieuwe SAST-tools accurater zijn in het detecteren 
van kwetsbaarheden dan de gevestigde referentietool. Het is 
daarom de moeite waard voor organisaties om te experimente-
ren met nieuwe tools.

	• Verschillende SAST-tools dekken verschillende gebieden. Het 
kan daarom de moeite waard zijn om meerdere SAST-tools te 
gebruiken.

Het tweede deel van dit onderzoek richt zich op obstakels die 
softwareontwikkelaars ervaren bij het gebruik van SAST-tools. 
Op basis van academische literatuur zijn de volgende obstakels als 
de belangrijkste geïdentificeerd:
1.	 Te veel foutpositieven
2.	 Onvoldoende informatieve meldingen
3.	 Te weinig hulp bij het oplossen van meldingen
4.	 Onvoldoende workflow integratie
5.	 Gebrek aan incorporatie van gebruikersfeedback

Door middel van een handmatige analyse is nagegaan in hoeverre 
de nieuwe tools deze obstakels adresseren. Sommige, maar lang 
niet alle obstakels worden door de nieuwe tools geadresseerd. Dit 
bevestigt dat het de moeite waard is voor organisaties om met de 
nieuwe tools te experimenteren, maar toont ook aan dat er nog 
veel ruimte voor verbetering is in de ontwikkeling van SAST-tools.

In het laatste deel van dit onderzoek wordt specifiek de 
Nederlandse situatie onder de loep genomen. Hiertoe is een 
enquête uitgevoerd onder mensen die aan (veilige) software
ontwikkeling werken bij organisaties die onderdeel zijn van de 
Rijksoverheid, de vitale sector, of bij softwareleveranciers van deze 
organisaties. De belangrijkste bevindingen zijn:
	• De nieuwe SAST-tools worden in Nederland relatief weinig 

gebruikt in verhouding tot andere landen.
	• SAST-tools zijn bij alle respondenten zeer belangrijk voor het 

ontdekken van kwetsbaarheden.
	• Organisaties in de publieke sector ervaren meer obstakels bij 

het gebruik van SAST-tools dan die in de financiële sector en de 
IT-sector.

De bevindingen van dit onderzoek geven aanleiding voor de 
volgende aanbevelingen:
	• Organisaties die software ontwikkelen zouden SAST-tools 

moeten gebruiken om kwetsbaarheden te detecteren.
	• Het kan voor organisaties die al lang dezelfde SAST-tool 

gebruiken de moeite waard zijn om met een nieuwe tool te 
experimenteren. Met name tools die het mogelijk maken eigen 
regels te schrijven bieden verschillende voordelen.

	• Het kan de moeite waard zijn om meerdere SAST-tools 
tegelijkertijd te gebruiken.

	• Het is nuttig om kennis in huis te ontwikkelen om eigen regels 
voor SAST-tools te schrijven. Kennisuitwisseling tussen 
verschillende Nederlandse sectoren kan het gebruik van 
SAST-tools verbeteren.

Dank aan Natalia Kadenko (NCSC) voor het vervullen van een 
klankbordrol, aan Rik van Dijk (NCSC) voor review van dit 
manuscript, en aan Erik Poll (Radboud Universiteit) voor review, 
literatuursuggesties en hulp bij het vinden van respondenten voor 
de enquête.



Onderzoek | NCSC

3

Inleiding

Kwetsbaarheden in software vormen de basis van veel cyber
aanvallen. Neem bijvoorbeeld de bekende log4j-casus. Daarbij 
hadden ontwikkelaars onvoldoende controle ingebouwd van de 
input die een gebruiker kan geven. Aangezien er zeel veel gebruik 
gemaakt werd van log4j, leidde dit tot een grote hoeveelheid 
kwetsbare systemen, en dus ook cyberaanvallen.

Het is dan ook essentieel om aandacht te besteden aan beveiliging 
tijdens het softwareontwikkelproces. Hier bestaan verschillende 
best practices voor, zoals bijvoorbeeld die in de Security 
Development Lifecycle van Microsoft.1 Het NCSC heeft al eerder 
onderzoek gedaan naar verschillende van deze best practices, 
waaronder Threat Modeling2 en SBOM’s3.

Een ander belangrijk onderdeel van veilig softwareontwikkeling is 
het uitvoeren van automatische testen. Dit wordt onder andere 
aangeraden in de richtlijnen van het NCSC.4 Men verdeelt deze 
testen meestal onder in drie categorieën:
1.	 SAST (Static Application Security Testing): hierbij gaat het om 

het analyseren van software zonder die eerst te draaien.
2.	 DAST (Dynamic Application Security Testing): hierbij wordt de 

software juist wel gedraaid tijdens het testen. Een populaire 
vorm van DAST is fuzzing.

3.	 SCA (Software Composition Analysis): dit is gerelateerd aan de 
eerdergenoemde SBOM’s. Het gaat om het automatisch 
herkennen van de alle software waar de gescande software 
afhankelijk van is, zodat er gewaarschuwd kan worden als een 
van die afhankelijkheden een kwetsbaarheid bevat.

Voor elk van deze categorieën is er een actieve industrie die werkt 
aan steeds bruikbaardere tools. Daarbij wordt geleund op nieuwe 
inzichten vanuit zowel de wetenschap als de praktijk.

1	 https://www.microsoft.com/en-us/securityengineering/sdl/practices
2	 https://www.ncsc.nl/documenten/publicaties/2024/mei/7/index
3	 https://www.ncsc.nl/documenten/publicaties/2023/juli/5/sbom-startersgids
4	 https://www.ncsc.nl/documenten/publicaties/2019/mei/01/beleids--en- 

beheersingsrichtlijnen-voor-de-ontwikkeling-van-veilige-software

Dit onderzoek beperkt zich tot tools van de eerste categorie: 
SAST-tools. Statische analyse is een relatief volwassen vorm van 
testen, die in het grootste deel van professionele softwareontwik-
kelingspijplijnen wordt gebruikt. Bekende voordelen van statische 
analyse ten opzichte van andere vormen van testen zijn: het 
detecteren van kwetsbaarheden vroeg in het ontwikkelproces, 
uitgebreide codedekking, en natuurlijke integratie in het 
CI/CD-proces.

Er zijn in het afgelopen decennium verschillende nieuwe SAST-
tools beschikbaar gekomen, die meestal beweren effectiever te 
zijn dan de status quo.

De hoofdvraag van dit onderzoek luidt: hoe kunnen Nederlandse 
organisaties profiteren van nieuwe ontwikkelingen in statische 
analyse?

Doelgroep 

Software Engineer
Quality Assurance/Test Engineer
Security Engineer
DevOps Engineer
IT/Infrastructure Manager
Security Analyst
System Administrator
Compliance Officer

https://www.microsoft.com/en-us/securityengineering/sdl/practices
https://www.ncsc.nl/documenten/publicaties/2024/mei/7/index
https://www.ncsc.nl/documenten/publicaties/2023/juli/5/sbom-startersgids
https://www.ncsc.nl/documenten/publicaties/2019/mei/01/beleids--en-beheersingsrichtlijnen-voor-de-ontwikkeling-van-veilige-software
https://www.ncsc.nl/documenten/publicaties/2019/mei/01/beleids--en-beheersingsrichtlijnen-voor-de-ontwikkeling-van-veilige-software


Onderzoek | NCSC

4

Deelvragen en methode

Om de onderzoeksvraag meer behapbaar te maken, wordt die 
onderverdeeld in verschillende deelvragen. Elke deelvraag is zelf 
ook weer verder onderverdeeld.

Deelvraag 1: wat zijn de nieuwe ontwikkelingen in 
statische analyse?
Het moet concreet worden wat precies wordt verstaan onder 
“nieuwe ontwikkelingen in statische analyse”. Omdat er elk jaar 
zeer veel nieuwe tools beschikbaar komen, wordt er in dit 
onderzoek een selectie gemaakt, onder andere op basis van 
populariteit.

DV1.1 Wat zijn de meest prominente nieuwe tools voor 
statische analyse?
Om goed te begrijpen hoe Nederlandse organisaties van de 
nieuwe tools kunnen profiteren, is het van belang om te begrijpen 
hoe die werken.

DV1.2 Op welke theoretische inzichten zijn deze tools 
gebaseerd?
Het is ook nuttig om te weten hoe de nieuwe tools zich tot elkaar 
verhouden en tot meer gevestigde tools, zodat organisaties 
kunnen inschatten of het de moeite waard is om over te stappen 
naar een nieuwe tool.

DV1.3 Hoe verhouden deze tools zich tot elkaar en tot 
meer gevestigde tools?
Deelvragen 1.1-1.3 worden beantwoord door middel van een 
literatuurstudie.

Deelvraag 2: in hoeverre adresseren deze nieuwe 
ontwikkelingen de behoeften van ontwikkelaars?
Uiteindelijk zijn nieuwe ontwikkelingen alleen relevant als ze 
bijdragen aan het doel om software veiliger te maken. Het is 
daarbij van belang om te weten waarom softwareontwikkelaars 
SAST-tools wel of niet gebruiken.

DV2.1 Wat zijn de belangrijkste obstakels die ontwikke-
laars ervaren bij het gebruik van SAST-tools?
Vervolgens is het interessant om na te gaan of de nieuwe tools 
deze obstakels ook daadwerkelijk adresseren.

DV2.2 In hoeverre worden deze obstakels geadresseerd 
door de nieuwe tools?
Deelvraag 2.1 wordt beantwoord door middel van een literatuur-
studie. Deelvraag 2.2 wordt beantwoord door de antwoorden op 
de eerdere deelvragen te vergelijken.

Deelvraag 3: hoe kunnen de nieuwe tools bijdragen 
aan de veiligheid van in Nederland ontwikkelde 
software?
De primaire doelgroep van dit onderzoek bestaat uit software
ontwikkelaars die werken bij de doelgroepen van het NCSC (op dit 
moment nog de Rijksoverheid en de vitale sector), of bij organisaties 
die software aan hen leveren. Het is daarom van belang om meer 
inzicht te krijgen in het gebruik van SAST-tools binnen deze groep.

DV3.1 Gebruiken Nederlandse organisaties de nieuwe 
tools?
Het is belangrijk dat elke organisatie een tool kan kiezen die bij 
ze past.

DV3.2 Welke nieuwe tools zijn geschikt voor welke 
organisaties?
Tot slot is het nuttig om te weten welke problemen er kunnen 
ontstaan als een organisatie daadwerkelijk een nieuwe tool wilt 
gaan implementeren.

DV3.3 Welke problemen kunnen ontstaan bij de 
implementatie van nieuwe tools?
Deelvragen 3.1 en 3.2 worden beantwoord door middel van een 
enquête onder Nederlandse softwareprofessionals. Deelvraag 3.3 
wordt niet beantwoord in dit rapport, maar kan onderwerp zijn van 
een eventueel vervolgonderzoek.



Onderzoek | NCSC

5

DV1.1: Toolselectie
Om deelvraag 1.1 te beantwoorden is begonnen met een lange lijst 
van SAST-tools.5 Via een proces van eliminatie zijn tools geselec-
teerd die:

Meer dan één populaire programmeertaal ondersteunen.
Aangezien dit onderzoek ten goede moet komen aan Nederlandse 
organisaties, is het belangrijk dat de geselecteerde SAST-tools 
programmeertalen ondersteunen die die organisaties gebruiken. 
Dit rapport beschouwt een programmeertaal als populair wanneer 
die in de top 5 van de TIOBE-index6 voorkomt. Door dit criterium 
vallen tools zoals Brakeman en Clippy af.

Meer ontdekken dan slechts problemen gerelateerd aan stijl en 
structuur of aan afhankelijkheden. Een probleem gerelateerd aan 
stijl en structuur is een probleem dat niet gaat om de betekenis van 
de code, maar slechts om de manier waarop die geformatteerd is. 
Een kwetsbare afhankelijkheid is een kwetsbaarheid die zich bevindt 
in code waar de gescande code afhankelijk van is, in plaats van in de 
gescande code zelf. Dit criterium sluit bijvoorbeeld de tools Black en 
Dependency-Check uit.

Nieuw zijn. Gezien dit onderzoek zich richt op nieuwe ontwikke-
lingen, worden alleen tools in beschouwing genomen die 
ontwikkeld (of grondig herontwikkeld) zijn in het de afgelopen 
10 jaar. Hiermee worden tools als Coverity Scan, PMD, SonarQube en 
Veracode uitgesloten.

Prominent zijn. Om de studie behapbaar te houden beperkt dit 
onderzoek zich tot slechts de meest bekende tools, gemeten aan 
de hand van sterren op GitHub. De geselecteerde tools hebben 
allemaal minstens 5.000 sterren. Dit sluit meer obscure tools uit, 
zoals MOPSA en TScanCode, maar ook FindSecBugs.

Hiermee kan de eerste deelvraag worden beantwoord:

DV1.1 Wat zijn de meest prominente tools voor statische 
analyse? 

De meest prominente nieuwe SAST-tools die minstens één 
populaire programmeertaal ondersteunen en scannen op 
meer dan slechts formatteerproblemen en kwetsbare 
afhankelijkheden zijn:
1.	 CodeQL7

2.	Infer8

3.	Semgrep OSS9

4.	Snyk Code10

5	 https://github.com/analysis-tools-dev/static-analysis
6	 https://www.tiobe.com/tiobe-index/
7	 https://codeql.github.com/
8	 https://fbinfer.com/
9	 https://semgrep.dev/
10	 https://snyk.io/product/snyk-code/

Voor de rest van dit rapport voegen we nog een extra criterium 
toe. Namelijk, dat de geselecteerde SAST-tool:

Transparante methoden heeft. Aangezien er ook een deelvraag is 
over de onderliggende techniek van deze tools, is het belangrijk 
dat daar iets over bekend is. Idealiter is de tool open source, maar 
als dat niet zo is dan moet op z’n minst moet ergens duidelijk 
beschreven staan hoe de tool werkt. Dit criterium sluit Snyk Code uit.

DV1.2: De geselecteerde tools
In deze paragraaf worden de drie geselecteerde tools kort 
beschreven.

CodeQL. Het kernidee van CodeQL is om broncode als data te 
beschouwen. Een geheel programma wordt dan een database, 
waar informatie uit kan worden opgehaalde door middel van 
queries (de QL staat dan ook voor Query Language). Deze techniek 
heeft een rijke geschiedenis,11 en vormt de basis van CodeQuest,12 
een vroege voorganger van CodeQL. CodeQuest gebruikt een 
variant van de taal Datalog als query language, die een verbetering 
vormt ten opzichte van eerder werk door recursieve queries toe te 
laten zonder dat de complexiteit te hoog wordt. De query language 
van CodeQL heeft object-georiënteerde functionaliteit en is 
specifiek ontwikkeld om broncode mee te analyseren. Deze taal 
heette oorspronkelijk QL en is ontwikkeld door het bedrijfje 
Semmle,13 een spin-off van de Universiteit van Oxford. In 2019 is 
Semmle overgenomen door het bedrijf GitHub, dat een jaar eerder 
onderdeel van Microsoft geworden was.

CodeQL onderscheidt zich van de meeste andere SAST-tools door 
nadruk te leggen op de mogelijkheid voor gebruikers om hun 
eigen queries te schrijven. Desondanks is CodeQL ook volledig 
geautomatiseerd te gebruiken, vanwege de grote hoeveelheid 
beschikbare queries voor klassen van kwetsbaarheden. Het feit 
dat gebruikers eigen queries kunnen schrijven maakt CodeQL 
verrassend veelzijdig. Naast gebruik als traditionele SAST-tool, 
wordt het bijvoorbeeld ook gebruikt als ondersteuning bij hand
matige codereview, voor het vinden van zogeheten spectre gadgets,14 
en voor het identificeren van kwaadaardige softwarepakketten.15

Tegenwoordig is de meest populaire manier om CodeQL te 
draaien via GitHub’s Code Scanning platform.16 Deze functionali-
teit is gratis voor open source projecten, en kan tegen betaling 
aangezet worden op de repositories van klanten van GitHub’s 
Cloud omgeving.

11	 Linton 1984.
12	 Hajiyev et al. 2006.
13	 https://www.cs.ox.ac.uk/innovation/research-impact/case-semmle.html
14	 https://github.com/google/security-research/tree/master/pocs/cpus/

spectre-gadgets
15	 Gobbi & Kinder 2023.
16	 https://docs.github.com/en/code-security/code-scanning/introduction-to- 

code-scanning/about-code-scanning

https://github.com/analysis-tools-dev/static-analysis
https://www.tiobe.com/tiobe-index/
https://codeql.github.com/
https://fbinfer.com/
https://semgrep.dev/
https://snyk.io/product/snyk-code/
https://www.cs.ox.ac.uk/innovation/research-impact/case-semmle.html
https://github.com/google/security-research/tree/master/pocs/cpus/spectre-gadgets
https://github.com/google/security-research/tree/master/pocs/cpus/spectre-gadgets
https://github.com/google/security-research/tree/master/pocs/cpus/spectre-gadgets
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning
https://docs.github.com/en/code-security/code-scanning/introduction-to-code-scanning/about-code-scanning


Onderzoek | NCSC

6

CodeQL ondersteunt 10 programmeertalen, waaronder Python, 
C++, en Java.17 Het heeft ook regels voor codekwaliteit, maar richt 
zich met name op kwetsbaarheden die een veiligheidsrisico 
vormen. De nieuwheid van CodeQL blijkt met name uit het feit dat 
het gebaseerd is op relatief recent academisch onderzoek. CodeQL 
heeft ongeveer 8.000 sterren op GitHub. De broncode van de 
engine van CodeQL is niet openbaar, maar die van alle queries wel.

Infer. De basis van Infer ligt in separation logic, een formele logica 
waarmee je kan redeneren over wat er in het geheugen van een 
computer zou gebeuren wanneer die een gegeven programma zou 
uitvoeren. Deze logica maakt het mogelijk om los van elkaar 
(vandaar separation) over verschillende gedeeltes van het 
geheugen te redeneren. Infer wordt ook wel een verification-based 
SAST-tool genoemd, omdat het probeert formeel te bewijzen dat 
een programma aan bepaalde voorwaarden voldoet (zoals de 
afwezigheid van null pointer dereferences). Infer doet dit door een 
soort samenvatting te maken van elke procedure van een 
programma. Deze samenvatting bestaat onder andere uit 
preconditions: voorwaarden die moeten gelden op het moment 
dat de procedure wordt aangeroepen. Waar preconditions bij 
formele verificatie normaal gesproken door de gebruiker moeten 
worden opgesteld, leidt Infer die automatisch af door middel van 
een techniek die bi-abductie heet.18 

De ontwikkeling van Infer is terug te voeren tot de uitvinding van 
separation logic aan het begin van deze eeuw.19 De effectiviteit van 
Infer’s voorgangers Smallfoot20 en SpaceInvader21 leidde ertoe dat 
hun ontwikkelaars in 2009 een bedrijfje genaamd Moinodics 
oprichtten. Dit bedrijf werd in 2013 door Meta gekocht, waar Infer 
tot op de dag van vandaag in ontwikkeling is. De kracht van Infer 
is schaalbaarheid, mogelijk gemaakt door de wortels in separation 
logic. Omdat elke procedure afzonderlijk wordt geanalyseerd, is 
incrementele analyse met Infer mogelijk. Dat betekent dat Infer 
een nieuw stukje toegevoegde code kan scannen, zonder dat het 
hele programma opnieuw gescand moet worden.

Infer is gratis en wordt gebruikt door een groot aantal kleine en 
grote organisaties, waaronder het Britse NCSC.22 

Infer ondersteunt C++, Java en Objective C. Daarnaast is er een 
variant, InferSharp, die C# ondersteunt. Infer richt zich voor
namelijk op problemen op het gebied van memory en concurrency, 
die vaak een veiligheidsrisico vormen. Daarnaast kan Infer ook 
gebruikt worden om bijvoorbeeld te controleren of de gescande 
code aan bepaalde stijlregels voldoet. Ook Infer ontleent 

17	 https://codeql.github.com/docs/codeql-overview/
supported-languages-and-frameworks/

18	 Calcagno et al. 2009.
19	 Reynolds 2002.
20	Berdine et al. 2006.
21	 Calcagno et al. 2009
22	https://results2021.ref.ac.uk/

impact/39476dc8-8346-4bcd-a932-e70060d472ca?Page=1

nieuwigheid aan een oorsprong in academisch onderzoek. Infer 
heeft ongeveer 15.000 sterren op GitHub en is transparant, want 
het is een open source.

Semgrep OSS. Net als CodeQL, analyseert Semgrep broncode ten 
opzichte van regels die gebruikers zelf kunnen opstellen. Ook bij 
Semgrep bestaat er een database van standaardregels waarmee 
Semgrep als een volledige geautomatiseerde SAST-tool gebruikt 
kan worden. Dit onderzoek beperkt zich tot de gratis open source 
variant van Semgrep, Semgrep OSS. Er bestaat ook een betaalde 
variant met extra functionaliteit.

De regels van Semgrep worden geschreven in een YAML-syntax en 
maken veel gebruik van patroonherkenning, vergelijkbaar met de 
bekende tool grep. De patroonherkenning wordt bij Semgrep 
echter verfijnd door middel van semantische informatie over het 
programma. Deze manier van werken is relatief gebruikersvrien-
delijk. Een ander voordeel is dat de code niet gecompileerd hoeft 
te worden voor gebruik.

Het bedrijf Semgrep is opgericht in 2017 onder de naam r2c. 
De tool Semgrep is een opvolger van de tool sgrep, ontwikkeld 
door Facebook in 2009.

Semgrep ondersteunt meer dan 35 programmeertalen, waaronder 
de gehele top 5 van de TIOBE-index. Ook Semgrep richt zich 
vooral op kwetsbaarheden met security impact, maar bevat 
daarnaast regels die meer algemene codekwaliteit bewaken. 
Semgrep is nieuw, omdat het in z’n huidige vorm nog geen 10 jaar 
bestaat. Het is daarnaast innovatief, omdat het (net als CodeQL) 
gebruik maakt van externe regels. Semgrep heeft ongeveer 11.000 
sterren op GitHub. De engine en een groot deel van de regels zijn 
open source. Een aantal geavanceerde regels is afgeschermd en 
alleen te gebruiken tegen betaling.

Hiermee kan de tweede deelvraag worden beantwoord:

DV1.2 Op welke theoretische inzichten zijn de nieuwe tools 
gebaseerd? 

CodeQL: het zien van code als een database en het gebruik 
van een domein-specifieke object-georiënteerde query 
language gebaseerd op Datalog.

Infer: separation logic en bi-abductie.

Semgrep: het verfijnen van grep-achtige patroonherkenning 
met semantische informatie.

https://results2021.ref.ac.uk/impact/39476dc8-8346-4bcd-a932-e70060d472ca?page=1
https://results2021.ref.ac.uk/impact/39476dc8-8346-4bcd-a932-e70060d472ca?page=1
https://results2021.ref.ac.uk/impact/39476dc8-8346-4bcd-a932-e70060d472ca?page=1


Onderzoek | NCSC

7

DV1.3: Vergelijking
Om de volgende onderzoeksvraag te beantwoorden worden de 
drie geselecteerde tools vergeleken met elkaar en met een meer 
gevestigde tool. De keuze voor de gevestigde tool is gevallen op 
SonarQube, aangezien uit de uitgevoerde enquête blijkt dat dit de 
meest gebruikte SAST-tool is in Nederland (zie figuur 3). De 
meeste artikelen in de literatuur vergelijken niet alle vier de tools, 
maar slechts een deel daarvan. Daarom volgen hieronder eerst 
paarsgewijze vergelijkingen.

Eerst volgen ter opfrissing de definities van een aantal termen uit 
de statistiek. Meldingen van SAST-tools zijn echt positieven als ze 
terecht zijn, en foutpositieven als ze onterecht zijn. De afwezigheid 
van een melding terwijl er wel degelijk een probleem is heet een 
foutnegatieve. Is er geen melding, en ook geen probleem? Dan 
spreek je van een echt negatieve. De foutpositievenratio is het aantal 
foutpositieven gedeeld door de som van de echt negatieven en de 
foutpositieven. In andere woorden: de foutpositievenratio is het 
percentage onschuldige code dat ten onrechte als probleem is 
gemarkeerd. De echtpositievenratio, foutnegatievenratio, en echtnega-
tievenratio hebben vergelijkbare definities. Tot slot maken 
sommige artikelen gebruik van de zogenaamde F1-score. 
Daarvoor definieert men eerst de precisie als het aantal echt 
positieven gedeeld door de som van het aantal echt positieven en 
het aantal foutpositieven. De F1-score is dan het harmonisch 
gemiddelde van de precisie en de echtpositievenratio.

SonarQube vs. CodeQL. Een studie uit 2023 van Li et al. vergelijkt 
zeven SAST-tools, waaronder SonarQube en CodeQL, door die toe 
te passen op Java-programma’s. Op de synthetische OWASP-
benchmark behaalt SonarQube een F1-score van 27%, waar die 
van CodeQL 49% is. De auteurs testen dezelfde tools ook op een 
door hen zelf samengestelde benchmark bestaande uit echte 
kwetsbaarheden in opensourceprogramma’s. Op die benchmark 
zijn SonarQube en CodeQL ongeveer even accuraat. Dezelfde 
studie vergelijkt de tools ook op snelheid, en vindt dat SonarQube 
sneller is dan CodeQL, met name bij grote programma’s (meer dan 
50k regels code).

Een andere studie uit 2024 van Li et al. vergelijkt ook zeven 
SAST-tools, maar dan op C++-programma’s. Ook daar presteert 
CodeQL significant beter dan SonarQube op een synthetische 
benchmark (de Juliet Test Suite). In deze studie wordt CodeQL ook 
op een echte dataset getest, maar SonarQube niet.

SonarQube vs. Infer. Deze tools worden in verschillende onder-
zoeken vergeleken, te beginnen met een studie uit 2023 van Liu et 
al. Die studie richt zich op Javaprogramma’s en vergelijkt 
SonarQube en Infer (en nog drie andere tools) qua reikwijdte van 
regels, accuraatheid en snelheid. De studie concludeert dat 
SonarQube een grotere reikwijdte heeft dan Infer, en dus ook 
meer CWE’s detecteert. Echter, binnen de klassen van kwetsbaar-
heden die Infer detecteert, is Infer accurater.

Een andere studie, van Alqaradaghi & Kozsik uit 2022, vergelijkt 
SonarQube en Infer specifiek wat betreft de detectie van null 
pointer dereferences in Javaprogramma’s. Het resultaat is dat de 
echtpositievenratio van Infer marginaal hoger is dan die van 
SonarQube, en de foutpositievenratio van SonarQube substantieel 
hoger dan die van Infer.

Tot slot is er een masterscriptie van Ablasser uit 2019. Deze neemt 
de echtpositievenratio en foutpositievenratio in beschouwing en 
concludeert dat Infer accurater is dan SonarQube op zowel 
programma’s geschreven in C++ als op programma’s geschreven 
in Java.

SonarQube vs. Semgrep OSS. Bij de eerdergenoemde studie van 
Li et al. uit 2023 wordt ook Semgrep meegenomen. Op de 
synthetische OWASP-benchmark is de F1-score van Semgrep 80% 
(en die van SonarQube 27%). Op de zelf samengestelde bench-
mark met echte programma’s is Semgrep ongeveer even accuraat 
als SonarQube. Semgrep is iets minder snel dan SonarQube. 
Interessant genoeg wordt de snelheid van Semgrep nauwelijks 
beïnvloed door de grootte van het gescande project; dat komt 
omdat Semgrep verschillende delen van het project parallel scant.

De eerdergenoemde studie van Liu et al. uit 2023 bekijkt ook 
Semgrep. De reikwijdte van Semgrep is minder groot dan die 
van SonarQube (18 CWE-categorieën vs. 28 CWE-categorieën). 
De accuraatheid van Semgrep blijkt in deze studie een stuk minder 
groot dan die van SonarQube. Dat is in ieder geval gedeeltelijke 
te verklaren door het feit dat Semgrep sommige klassen van 
kwetsbaarheden niet ondersteunt. Deze studie bevestigt dat 
Semgrep minder snel is dan SonarQube en dat de snelheid van 
Semgrep nauwelijks beïnvloed wordt door de grootte van het 
gescande project. Een derde studie die zowel SonarQube als 
Semgrep heeft getest is de eerdergenoemde studie van Li et al. uit 
2024. Op de synthetische Juliet Test Suite is Semgrep significant 
accurater dan SonarQube.

CodeQL vs. Infer. De enige gevonden studie die zowel CodeQL als 
Infer test is die van Mantovani et al. uit 2022. Op een beperkte 
dataset van echte programma’s, slaagt CodeQL erin om 9 van de 
10 kwetsbaarheden te detecteren, waar Infer er slechts 2 van de 10 
detecteert. Het moet hierbij wel worden benoemd dat de auteurs 
eigen CodeQL queries hebben toegevoegd die op maat zijn 
gemaakt voor de gevonden kwetsbaarheden.

CodeQL vs. Semgrep OSS. De twee studies die zowel CodeQL als 
SonarQube bekijken, bekijken ook Semgrep.

Bij de studie van Li et al. uit 2023 is op de synthetische benchmark 
de F1-score van CodeQL 49% en die van Semgrep 80%. Op de 
benchmark met echte programma’s zijn SonarQube en Semgrep 
ongeveer even accuraat. CodeQL is sneller op relatief kleine 
programma’s (< 50k coderegels), en Semgrep is sneller op relatief 
grote programma’s.



Onderzoek | NCSC

8

Uit studie van Li et al. uit 2024 blijkt dat CodeQL accurater is dan 
Semgrep op de synthetische Juliet Test Suite.

Er is nog een niet eerdergenoemde studie die zowel CodeQL en 
Semgrep vergelijkt, namelijk die van Bennett et al. uit 2024. Deze 
studie test 8 tools op de SAP-database, die bestaat uit handmatig 
geselecteerde open source Java-programma’s met bekende 
kwetsbaarheden. CodeQL en Semgrep detecteren ongeveer 
evenveel van deze kwetsbaarheden (beide zo’n 15%). Door op 
maat gemaakte regels toe te voegen aan Semgrep, slaagden de 
auteurs erin de detectiegraad van Semgrep op deze dataset te 
verhogen tot 44,7%. Het is daarbij natuurlijk wel de vraag of die 
regels ook breder toepasbaar zijn dan alleen op deze dataset.

Infer vs. Semgrep OSS. Bij de enige gevonden studie die beide 
tools bekijkt, die van Liu et al. uit 2023, detecteren zowel Infer als 
Semgrep zeer weinig kwetsbaarheden. Dit komt waarschijnlijk 
doordat de kwetsbaarheden in de benchmarks die bij deze studie 
gebruikt worden vooral kwaliteit gerelateerd zijn in plaats van 
specifiek security gerelateerd. Qua reikwijdte scoren Infer en 
Semgrep ongeveer even hoog. Deze studie observeert dat Infer 
sneller is dan Semgrep, behalve bij zeer grote projecten (> 100k 
coderegels).

Hiermee kan de derde deelvraag worden beantwoord:

DV1.3 Hoe verhouden deze tools zich tot elkaar en tot meer 
gevestigde tools? 

•	 Infer is accurater dan SonarQube, maar op een nauwere 
selectie aan CWE’s.

•	 Wat betreft kwetsbaarheden die een veiligheidsrisico 
vormen, zijn Semgrep OSS en CodeQL accurater dan 
SonarQube.

•	 SonarQube is accurater dan de nieuwe tools als het gaat 
om algemene problemen met codekwaliteit.

•	 CodeQL is over het algemeen iets accurater dan 
Semgrep OSS.

•	 SonarQube is sneller dan zowel CodeQL als Semgrep OSS.
•	 Op relatief kleine projecten zijn CodeQL en Infer sneller dan 

Semgrep OSS, maar op grotere projecten geldt het 
omgekeerde.

DV2.1: Ervaringen ontwikkelaars
Er is behoorlijk veel onderzoek gedaan naar de ervaringen van 
ontwikkelaars bij het gebruik van SAST-tools. In de afgelopen jaren 
zijn er twee artikelen verschenen die door middel van systema-
tisch literatuuronderzoek een overzicht geven van deze resultaten. 

Nachtigall et al. (2022) destilleert uit de literatuur de volgende zes 
bruikbaarheidscriteria. In het artikel wordt elk criterium nog 
verder onderverdeeld in verschillende subcriteria.
1.	 Meldingen: een SAST-tool moet informatieve meldingen geven 

op basis waarvan een gebruiker actie kan ondernemen.
2.	 Oplossingshulp: het blijkt uit de literatuur dat ontwikkelaars 

graag hulp van een SAST-tool krijgen bij het oplossen van een 
gesignaleerd probleem.

3.	 Foutpositieven: één van de meest belangrijke obstakels bij het 
gebruik van SAST-tools is het hoge aantal gerapporteerde 
foutpositieven. Een SAST-tool moet dit op een bepaalde 
manier mitigeren. Bijvoorbeeld door een bepaalde betrouw-
baarheid score toe te kennen aan een melding, of door 
gebruikers foutpositieven handmatig te laten onderdrukken.

4.	 Gebruikersfeedback: SAST-tools moeten gebruikers de 
mogelijkheid bieden om feedback te geven aan de tool. Dit kan 
bijvoorbeeld door de regels aanpasbaar te maken, of door 
gebruikers meldingen te laten filteren.

5.	 Workflow integratie: SAST-tools moeten makkelijk te integre-
ren zijn in de workflow van de gebruiker. Afhankelijk van de 
specifieke gebruiker kan dit op meerdere manieren: in de IDE, 
in de CI/CD-pijplijn, of als standalone tool. Idealiter onder-
steunt een tool meerdere workflows.

6.	 Interface: een SAST-tool moet een interface hebben die goed 
gebruik stimuleert. Bijvoorbeeld door coderegels waarvoor een 
melding geldt op te laten lichten in de IDE. Of door een 
overzicht te geven van welke meldingen al zijn opgelost en 
welke nog open staan.

De studie van Nachtigall et al. evalueert 46 tools aan de hand van 
deze criteria, waaronder Semgrep OSS en InferSharp (een variant 
van Infer). CodeQL en Infer worden niet meegenomen in de 
vergelijking; tot CodeQL konden de auteurs geen toegang krijgen, 
en bij Infer hadden de auteurs problemen met installeren. Om een 
eerlijke vergelijking te maken worden in dit rapport voor de 
beantwoording van DV2.2 alle drie de tools opnieuw tegen het 
licht gehouden.

De andere recente studie die een overzicht geeft van gebruikers
ervaringen met SAST-tools is Wadhams et al. (2024). Via een 
systematisch literatuuronderzoek, waarin 89 relevante artikelen 
zijn bestudeerd, identificeert deze studie vijf obstakels bij het 
gebruik van SAST-tools. Deze vijf obstakels zijn, op volgorde van 
meest tot minst voorkomend in de literatuur:
1.	 Veel foutpositieven
2.	 Slechte presentatie van output
3.	 Tijdrovend om op te zetten
4.	 Te weinig hulp bij het oplossen van meldingen
5.	 Slechte workflow integratie



Onderzoek | NCSC

9

Daarnaast noemt de studie ook het gebrek aan aanpasbaarheid 
van SAST-tools als een belangrijk obstakel.

Door de bevindingen van de twee genoemde overzichtsartikelen 
met elkaar te combineren vormt zich het volgende antwoord op 
DV2.1:

DV2.1 Wat zijn de belangrijkste obstakels die ontwikke-
laars ervaren bij het gebruik van ASAT’s? 

1.	 Te veel foutpositieven
2.	 Onvoldoende informatieve meldingen
3.	 Te weinig hulp bij het oplossen van meldingen
4.	 Onvoldoende workflow integratie
5.	 Gebrek aan incorporatie van gebruikersfeedback

 
DV2.2: Adressering obstakels door nieuwe tools
De vijf geïdentificeerde obstakels worden één voor één besproken. 
Elk obstakel wordt opgedeeld in verschillende subobstakels, en bij 
elk subobstakel wordt per SAST-tool handmatig een inschatting 
gemaakt of die het subobstakel niet, gedeeltelijk, of helemaal 
adresseert.

Foutpositieven

Percentage foutpositieven
Uit verschillende van de eerder besproken onderzoeken blijkt dat 
de nieuwe tools accurater zijn dan het gevestigde SonarQube. Dat 
betekent echter nog niet noodzakelijk dat die tools ook minder 
foutpositieven opleveren.

In Ami et. al (2024) wordt door middel van interviews met 20 
gebruikers onderzocht hoe zij SAST-tools ervaren. Daarbij komt 
ook de vraag aan bod welk percentage van foutpositieven deze 
gebruikers kunnen tolereren. De studie concludeert dat, waar de 
in de literatuur vaak een grens van 20% wordt genoemd, de door 
hun geïnterviewde gebruikers ook een hoger aantal zouden 
tolereren, soms tot wel 80%.

De studie Shen et al. (2023) past CodeQL toe op verschillende 
open source embedded softwareprojecten. Uit een door de 
auteurs uitgevoerde handmatige analyse blijkt dat 23% foutposi-
tieven oplevert. De eerdergenoemde Li et al. (2023) en Li et al. 
(2024) vinden een foutpositievenratio van respectievelijk 60% (op 
de OWASP-benchmark) en 23% (op de Juliet Test Suite). Met een 
gemiddeld percentage foutpositieven van ongeveer 35%, kan 
worden gezegd dat CodeQL dit obstakel gedeeltelijk adresseert.

In Kharkar (2022) wordt door middel van machine learning het 
aantal foutpositieven van Infer gereduceerd. Het meest succesvol-
le model slaagt erin om dit terug te brengen tot 14,6%. Zonder 
enige toevoegingen is het percentage foutpositieven van Infer 
volgens deze studie al 27,3%. Dit is voldoende om te concluderen 
dat Infer dit obstakel geheel adresseert.

Bij Li et al. (2023) en Li et al. (2024) is het percentage foutpositie-
ven van Semgrep respectievelijk 30% en 68%, met een gemiddeld 
percentage van 49% kan worden gezegd dat Semgrep dit obstakel 
gedeeltelijk addreseert.

Betrouwbaarheidsscore
Uit eerder onderzoek blijkt dat gebruikers beter met foutpositieven 
om kunnen gaan als een SAST-tool een betrouwbaarheidsscore 
toekent aan waarschuwingen. Dit doet CodeQL niet, Infer ook 
niet, en Semgrep geheel.

Informatieve meldingen

Transparante redeneringen
Een melding is beter te begrijpen als het mogelijk is om te 
achterhalen op basis van welke redenering een SAST-tool die 
melding geeft. Bij Infer is dit bij de meeste meldingen niet het 
geval. Voor Semgrep en CodeQL geldt dat elke melding gemaakt 
wordt op basis van een publiek beschikbare regel. Aangezien die 
regels bij CodeQL soms moeilijk te begrijpen zijn, is de inschatting 
dat CodeQL dit obstakel gedeeltelijk adresseert. De regels van 
Semgrep zijn beter te begrijpen, dus die tool adresseert dit 
obstakel geheel.

Pad omschrijving
Een significant deel van de kwetsbaarheden ontstaat doordat 
onbetrouwbare input (ook wel de source genoemd) een weg maakt 
door het programma naar een kwetsbare functie (die noemt men 
de sink). Een melding van dit soort kwetsbaarheden is informatiever 
op het moment dat had pad van de source naar de sink expliciet 
wordt gemaakt. Alle drie de beschouwde tools doen dit geheel.

Extra informatie (bijvoorbeeld via links)
Een melding wordt ook informatiever als de gebruiker extra 
informatie kan krijgen, bijvoorbeeld via een link. Bij alle drie de 
beschouwde tools is er online uitgebreide informatie te vinden 
over alle specifieke meldingen. Ze adresseren dit obstakel 
daarmee geheel.

Ernst
Een andere manier waarop een melding informatief kan zijn, is 
door de ernst te classificeren. Hiermee kunnen gebruikers 
meldingen prioriteren. Zowel CodeQL als Semgrep doen dit 
geheel, terwijl Infer het niet doet.



Onderzoek | NCSC

10

Hulp bij het oplossen van meldingen

Autofix
Idealiter bieden tools de mogelijkheid om meldingen automatisch 
te verhelpen. Dit vergroot namelijk de kans dat ontwikkelaars ook 
daadwerkelijk iets met de meldingen doen. CodeQL maakt het 
sinds kort mogelijk om meldingen automatisch te verhelpen door 
middel van de AI-assistent Copilot. Daarmee adresseert CodeQL 
dit obstakel geheel. Bij Semgrep is het mogelijk om een fix toe te 
voegen aan een regel. Aangezien lang niet alle regels van deze 
mogelijkheid gebruik maken, adresseert Semgrep dit obstakel 
gedeeltelijk. Infer, tot slot, biedt geen autofix voorziening en 
adresseert dit obstakel daarom niet.

Workflow integratie

Prioritering
Het helpt als de meldingen op een geprioriteerde manier aan de 
gebruiker worden getoond. Bij CodeQL is dit het geval in de 
webinterface. De CLI-applicatie kan de resultaten in verschillende 
formaten uitdraaien, waaronder het SARIF-formaat, dat prioritering 
faciliteert. De IDE-versie van CodeQL is meer bedoeld om individuele 
queries te draaien en te testen, waarbij prioritering minder 
relevant is. Al met al is het oordeel dat CodeQL dit obstakel geheel 
adresseert. Semgrep OSS en Infer adresseren dit obstakel niet.

IDE-integratie
Vrijwel alle ontwikkelaars schrijven hun code in een IDE. Het is 
daarom heel nuttig als een SAST-tool in de IDE geïntegreerd kan 
worden. Dit geldt voor alle drie de tools geheel.

CLI
Naast gebruik in de IDE, is het nuttig als een SAST-tool de 
mogelijkheid biedt om vanuit de command line uitgevoerd te 
worden. Hiermee worden dingen als integratie met andere tools 
en gebruik op afstand makkelijker om te implementeren. Alle drie 
de tools ondersteunen gebruik in de command line geheel.

Snelheid
Om de workflow van een ontwikkelaar zo min mogelijk te storen, 
is het van belang dat een tool niet te langzaam is. Op basis van 
persoonlijke ervaring van de auteur en de literatuur is de bevinding 
dat CodeQL dit obstakel niet adresseert, Infer geheel en Semgrep 
gedeeltelijk.

Gebruikersfeedback

Aanpasbare regels
Aanpasbare regels bieden verschillende voordelen. Het stelt 
gebruikers bijvoorbeeld in staat om een tool te kalibreren naar 
hun codebase en regels te gebruiken uit de gemeenschap. CodeQL 
en Semgrep ondersteunen dit geheel. Bij Infer is het ook mogelijk 
om zogeheten checkers te schrijven, maar dat is minder makkelijk 
en ook minder gebruikelijk. Daarom ondersteunt Infer dit 
gedeeltelijk.

Gebruikersfeedback echt positieven
SAST-tools kunnen hun accuraatheid verbeteren door te leren van 
gebruikersfeedback over echt positieven. De drie bekeken tools 
ondersteunen dit allen niet.

Onderdrukking
Het is belangrijk dat gebruikers bepaalde meldingen kunnen 
onderdrukken, zodat ze zich kunnen richten op meldingen die 
belangrijker zijn. Alle drie de tools ondersteunen dit geheel.

Filtering
Het kan nuttig zijn om meldingen te kunnen filteren op bijvoor-
beeld het type kwetsbaarheid, of de ernst van een melding. 
CodeQL en Infer ondersteunen dit geheel en Semgrep onder-
steunt dit niet.

DV2.2 In hoeverre worden deze obstakels geadresseerd 
door de nieuwe tools? 

Zie tabel 1 voor een volledig overzicht van de handmatige 
inschatting.

Figuur 1  functies respondenten

Overige

Project Manager

IT/Infrastructure
Manager

Compliance
Officer

Architect

Information
Security Officer DevOps Engineer

Security Engineer

Software Engineer



Onderzoek | NCSC

11

Tabel 1  overzicht van de (deel)obstakels en de inschatting van de mate waarin de 
geselecteerde tools die adresseren: niet (-), gedeeltelijk (±) of geheel (+). C staat voor 
CodeQL, I staat for Infer, en S staat voor Semgrep OSS.

C I S
Vals-positieven

Percentage vals-positieven ± + ±

Betrouwbaarheidsscore - - +

 
Informatieve meldingen

Transparante redeneringen + ± +

Pad omschrijving + + +

Extra informatie (bijvoorbeeld via links) + + +

Ernst + - +

 
Hulp bij het oplossen van meldingen

Autofix + - ±

 
Workflow integratie

Prioritering + - -

IDE-integratie + + +

CLI + + +

Snelheid - + ±

 
Gebruikersfeedback

Aanpasbare regels + ± +

Gebruikersfeedback echtpositieven - - -

Onderdrukking + + +

Filtering + + -

DV3.1 & DV3.2: Enquêteresultaten
Om de derde deelvraag te beantwoorden is er via verschillende 
kanalen een enquête uitgezet bij de doelgroepen van het NCSC. 
Er zijn 44 respondenten. In Figuur 1 en Figuur 2 is te zien hoe de 
respondenten verdeeld zijn over functies en sectoren. Ongeveer 
de helft van de respondenten werkt als softwareontwikkelaar. De 
rest heeft een rol met verantwoordelijkheid over het proces, zoals 
Information Security Officer. De best gepresenteerde sectoren zijn 
de publieke sector, de financiële sector, en de IT-sector. Iets meer 
dan driekwart van de respondenten werkt in één van die sectoren.

Figuur 2  sectoren respondenten

Luchtvaart/defensie
Consultancy

Telecommunications
Energie

Transport

IT

Publieke sector

Financiële sector

De respondenten is gevraagd met welke SAST-tools ze ervaring 
hebben, en welke ze tegenkomen in hun huidige werk. Zie figuren 
3 en 4 voor een volledig overzicht van de antwoorden.

Wat betreft gebruik van de nieuwe tools, blijkt dat van de 44 
respondenten er 0 ervaring hebben met Infer, 4 met CodeQL 
(waarvan 1 in de huidige functie) en 5 met Semgrep (waarvan 4 in 
de huidige functie). Ter vergelijking: 32 respondenten hebben 
ervaring met SonarQube (waarvan 25 in de huidige functie).

Het is ook interessant om deze resultaten te vergelijken met een 
recent onderzoek van Bennet et al. uit 2024. Het aandeel van hun 
respondenten dat SonarQube gebruikt (59%) is ongeveer even 
groot als dat van ons (57%), terwijl hun aandeel CodeQL-
gebruikers (25%) en Semgrep-gebruikers (17%) een stuk groter zijn 
dan dat van ons (resp. 2% en 9%). Een ander interessant verschil is 
dat er onder onze respondenten relatief veel gebruikers van 
Checkmarx en Fortify zijn, terwijl die tools bij Bennet et al. buiten 
de top 7 vallen.

Op basis hiervan kan de eerste deelvraag van vraag 3 worden 
beantwoord:

DV3.1 Gebruiken Nederlandse organisaties de nieuwe 
tools? 

Op basis van de enquête kan geconcludeerd worden dat de 
nieuwe tools nog zeer weinig worden gebruikt bij 
Nederlandse organisaties. Dat staat in contrast met de 
bevindingen van Benett et al. (2024), die onder wereldwijde 
respondenten een groter aantal CodeQL- en Semgrep-
gebruikers aantreffen.

 



Onderzoek | NCSC

12

De volgende deelvraag gaat over welke tools geschikt zijn voor 
welke organisaties. Er valt een aantal observaties te maken.

Voor de meeste organisaties is de belangrijkste reden om 
SAST-tools te gebruiken het detecteren van security bugs.

Zie figuur 5 voor een overzicht van waar de respondenten de 
SAST-tools voor gebruiken. Daaruit blijkt dat het vinden van 
security bugs de belangrijkste reden is om SAST-tools te gebruiken. 
Aan de ene kant is dit opvallend, omdat SAST-tools vaak ook meer 
functionaliteit bieden, zoals stimuleren van een uniforme 
codestijl. Aan de andere kant is het begrijpelijk dat ontwikkelaars 
kwetsbaarheden in hun code nóg liever willen voorkomen dan 
andere kwaliteitsproblemen. In figuur 6 is te zien dat ditzelfde 
beeld ook binnen specifieke sectoren geldt.

Bij de meeste sectoren, maar niet bij de publieke sector, zijn 
SAST-tools een belangrijker middel om security bugs te 
detecteren dan handmatige codereview en pentests.

Zie figuur 6. Van bijvoorbeeld de IT-sector, vindt 100% het gebruik 
van SAST-tools belangrijk of zeer belangrijk voor het detecteren 
van security bugs, terwijl dat respectievelijk 89% en 67% is voor 
handmatige codereview en pentests. Dit bevestigt dat SAST een 
zeer belangrijk middel is voor organisaties om kwetsbaarheden te 
detecteren.

De respondenten uit de IT-sector en de financiële sector ervaren 
minder obstakels bij het gebruik van SAST-tools dan die uit de 
publieke sector en de overige sectoren.

Zie figuur 8. Met name bij workflow integratie is het percentage 
respondenten dat dat een aanzienlijk obstakel vindt, of vindt dat 
dat SAST-tools onbruikbaar maakt, in de financiële sector (38%) 
en de IT-sector (44%) veel kleiner dan in de publieke sector (77%) 
en de overige sectoren (78%). Dit zou kunnen betekenen dat de 
publieke sector van de andere sectoren kan leren op het gebied 
van SAST-tools.

DV3.2: Welke tools zijn geschikt voor welke organisaties?

Aangezien Infer een kleinere klasse van kwetsbaarheden 
detecteert, valt het hoe dan ook aan te raden om naast Infer 
ook een andere SAST-tool te gebruiken. Met het oog op 
workflow integratie is het wellicht te overwegen om CodeQL 
te gebruiken wanneer je code op GitHub is gehost, en 
Semgrep te gebruiken wanner je code op GitLab is gehost.

Figuur 3  ervaringen respondenten met verscheidene SAST-tools

0 5 10 15 20 25 30 35

Overige

Clippy

Sigrid

FindBugs/SpotBugs

cargo-deny

Veracode

CodeQL

Coverity Scan

Semgrep

Snyk Code

Fortify

Checkmarx

SonarQube

Aantal gebruikers

Figuur 4  ervaringen respondenten met verscheidene SAST-tools in huidige functie

0 5 10 15 20 25

Overige

Sigrid

Snyk Code

Fortify

Semgrep

Checkmarx

SonarQube

Aantal gebruikers



Onderzoek | NCSC

13

Figuur 5  belang gebruik van SAST-tools door respondenten voor verschillende doeleinden

0 10 20 30 40 50

Security bugs

Afhankelijkheden

Security-ongerelateerde bugs

Stijl en structuur

Performance

Zeer belangrijk Belangrijk Enigszins belangrijk Onbelangrijk

Figuur 6  voor zowel SAST als handmatige codereviews hebben de respondenten aangegeven of ze dat niet belangrijk, enigszins belangrijk, belangrijk of zeer belangrijk vinden 
voor het detecteren van problemen op het gebied van performance, security-ongerelateerde bugs, security bugs, afhankelijkheden, en stijl en structuur. Naar het belang van 
penetration tests is alleen gevraagd op het gebied van security bugs. Deze heatmap geeft per sector het percentage van respondenten dat een onderdeel óf belangrijk, óf zeer 
belangrijk vindt.

Publieke sector

Financiële sector

IT

Overige

sty
le_sa

st

perfo
rm

ance
_sa

st

nonse
cu

rit
y_sa

st

se
cu

rit
y_sa

st

dependency
_sa

st

sty
le_m

anual

perfo
rm

ance
_m

anual

nonse
cu

rit
y_m

anual

 

se
cu

rit
y_m

anual

dependency
_m

anual

se
cu

rit
y_pente

st

62% 46% 62% 92% 85% 69% 62% 77% 92% 69% 92%

46% 54% 62% 100% 85% 77% 85% 77% 92% 85% 77%

78% 56% 56% 100% 78% 44% 78% 67% 89% 44% 67%

56% 22% 44% 100% 78% 67% 56% 56% 78% 44% 89%



Onderzoek | NCSC

14

Figuur 7  obstakels bij het gebruik van SAST-tools

0 10 20 30 40 50

Te veel foutpositieven

Gebrek aan workflowintegratie

Te veel waarschuwingen

Niet iteratief te gebruiken

Te veel foutnegatieven

Gebrek aan aanpasbaarheid

Het maakt ze onbruikbaar Een aanzienlijk obstakel Een gering obstakel Geen obstakel

Figuur 8  heatmap van percentage minstens aanzienlijk obstakel per sector en onderdeel

Publieke sector

Financiële sector

IT

Overige

warn
ing_am

ount

false
_posit

ives

false
_negativ

es

cu
sto

m
isa

bilit
y

work
flo

w

ite
ra

tiv
e

62% 69% 46% 54% 77% 46%

46% 54% 38% 38% 38% 38%

33% 56% 56% 44% 44% 22%

67% 78% 33% 56% 78% 67%



Onderzoek | NCSC

15

Conclusies en adviezen

In dit hoofdstuk worden een aantal concrete adviezen gegeven 
voor hoe Nederlandse organisaties nieuwe SAST-tools tot hun 
voordeel kunnen aanwenden.

Gebruik SAST-tools
SAST-tools zijn volgens de respondenten van de enquête een zeer 
belangrijk middel om kwetsbaarheden te detecteren. Het is dan 
ook alle organisaties aan te raden om SAST-tools te gebruiken.

Experimenteer met nieuwe tools
Nieuwe tools lijken op verschillende vlakken beter te presteren 
dan gevestigde tools. Voor elke van de drie in dit rapport 
besproken nieuwe tools geldt dat ze gratis uit te proberen zijn. 
Het is voor Nederlandse organisaties de moeite waard om met 
nieuwe tools te experimenteren om te kijken of ze ook in hun 
specifieke situatie een verbetering vormen ten opzichte van de 
status quo. Dat hoeft natuurlijk niet beperkt te blijven tot de tools 
in dit rapport. De ontwikkelingen gaan snel, en voor sommige 
organisaties zijn gespecialiseerde tools geschikter.

Gebruik meerdere tools
Uit verschillende onderzoeken, waaronder Bennet et al. (2024), 
blijft dat SAST-tools elkaar aanvullen: de één detecteert fouten die 
de andere niet ziet en vice versa. Voor optimale dekking valt het 
dus aan te raden om meerdere tools tegelijkertijd te gebruiken.

Schrijf eigen regels, of configureer SAST-tools naar de eigen organisatie
Twee nieuwe SAST-tools, CodeQL en Semgrep, onderscheiden 
zich door aanpasbare regels te gebruiken. Uit verschillende 
onderzoeken blijkt dat deze tools nog effectiever zijn als de regels 
aangepast zijn aan de organisatie waar ze worden toegepast. 
Het is de moeite waard om binnen een organisatie kennis op te 
bouwen over hoe deze regels worden geschreven. Ook bij 
SAST-tools die geen aanpasbare regels ondersteunen is het 
verstandig om te kijken hoe die optimaal geconfigureerd kunnen 
worden naar de eigen organisatie.

Kennisuitwisseling tussen organisaties uit verschillende Nederlandse 
sectoren kan het gebruik van SAST-tools verbeteren
Uit de enquêteresultaten blijkt dat respondenten uit de IT-sector 
en de financiële sector minder obstakels ervaren bij het gebruik 
van SAST-tools dan die uit de publieke sector. Het zou goed zijn als 
er meer kennisuitwisseling zou zijn, zodat bijvoorbeeld de 
publieke sector op dit gebied van de andere sectoren kan leren. 
Het zou ook interessant zijn om beter te begrijpen waarom de 
publieke sector de enige sector is waarin pentests en handmatige 
codereview even belangrijk zijn voor het detecteren van kwets-
baarheden als SAST-tools.

Discussie en vervolg

Een belangrijk gebrek van dit onderzoek is dat de enquête 
waarschijnlijk slechts is ingevuld door mensen die met SAST-tools 
werken. Dit zou een vertekend beeld kunnen geven. In een 
vervolgstudie zou het daarom interessant zijn om ook expliciet 
softwareontwikkelaars te bevragen die geen SAST-tools gebruiken.

Het is ook belangrijk om te vermelden dat de kosten van de 
vergeleken SAST-tools niet in beschouwing genomen zijn. In de 
praktijk spelen die natuurlijk wel een rol bij de beslissing van een 
organisatie om een SAST-tool te gebruiken. Het Amerikaanse 
agentschap CISA heeft recentelijk gesignaleerd dat er onvoldoende 
empirische data is over de kosteneffectiviteit van de best practices 
op het gebied van veilige softwareontwikkeling.23

Een andere omissie van dit onderzoek is dat het zich specifiek op 
statische analyse richt, en weinig vergelijkingen maakt met andere 
manieren om software te testen. Bij de enquête is respondenten 
wel gevraagd naar hun ervaringen met handmatig testen en 
pentesten (zie figuur 6), maar specifiek niet naar dynamische 
analyse. Bij vervolgonderzoek zou het nuttig zijn om ook het 
gebruik van dynamische analyse onder deze doelgroep in kaart 
te brengen.

Van de 44 respondenten hebben er 20 hun mailadres achter
gelaten, omdat ze open staan om aan een vervolgstudie deel te 
nemen. Deze vervolgstudie zou zich kunnen richten op de 
vooralsnog onbeantwoorde DV 3.3: welke problemen kunnen 
ontstaan bij de implementatie van deze tools? Deze studie zou 
de vorm kunnen hebben van interviews, maar ook bijvoorbeeld 
een case study waarin nieuwe tools bij een organisatie worden 
geïmplementeerd.

23	 https://www.cisa.gov/sites/default/files/2024-10/CSAC_October-Quarterly-
Meeting_SBD-Recommendations_20241011_508.pdf

https://www.cisa.gov/sites/default/files/2024-10/CSAC_October-Quarterly-Meeting_SBD-Recommendations_20241011_508.pdf
https://www.cisa.gov/sites/default/files/2024-10/CSAC_October-Quarterly-Meeting_SBD-Recommendations_20241011_508.pdf


Onderzoek | NCSC

16

Literatuur

Ablasser, M. (2019). Effectiveness of Verification Tools [Master’s thesis, 
TU Graz].

Alqaradaghi, M., & Kozsik, T. (2022). Inferring the Best Static 
Analysis Tool for Null Pointer Dereference in Java Source Code. 
Proceedings http://ceur-ws.org ISSN, 1613, 0073.

Ami, A. S., Moran, K., Poshyvanyk, D., & Nadkarni, A. (2024). 
“False negative-that one is going to kill you”: Understanding 
Industry Perspectives of Static Analysis based Security Testing. In 
2024 IEEE Symposium on Security and Privacy (SP) (pp. 3979-3997). IEEE.

Bennett, G., Hall, T., Winter, E., & Counsell, S. (2024). Semgrep*: 
Improving the limited performance of static application security 
testing (SAST) tools. In Proceedings of the 28th International Conference 
on Evaluation and Assessment in Software Engineering (pp. 614-623).

Berdine, J., Calcagno, C., & O’Hearn, P. W. (2006). Smallfoot: 
Modular automatic assertion checking with separation logic. In 
Formal Methods for Components and Objects: 4th International 
Symposium, FMCO 2005, Amsterdam, The Netherlands, November 1-4, 
2005, Revised Lectures 4 (pp. 115-137). Springer Berlin Heidelberg.

Calcagno, C., Distefano, D., O’Hearn, P., & Yang, H. (2008). Space 
invading systems code. In International Symposium on Logic-Based 
Program Synthesis and Transformation (pp. 1-3). Berlin, Heidelberg: 
Springer Berlin Heidelberg.

Calcagno, C., Distefano, D., O’Hearn, P., & Yang, H. (2009). 
Compositional shape analysis by means of bi-abduction. In 
Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium on 
Principles of programming languages (pp. 289-300).

Gobbi, M. F., & Kinder, J. (2023). Poster: Using CodeQL to Detect 
Malware in npm. In Proceedings of the 2023 ACM SIGSAC 
Conference on Computer and Communications Security (pp. 
3519-3521).

Hajiyev, E., Verbaere, M., & De Moor, O. (2006). Codequest: 
Scalable source code queries with datalog. In ECOOP 2006– Object-
Oriented Programming: 20th European Conference, Nantes, France, July 
3-7, 2006. Proceedings 20 (pp. 2-27). Springer Berlin Heidelberg.

Kharkar, A., Moghaddam, R. Z., Jin, M., Liu, X., Shi, X., Clement, C., 
& Sundaresan, N. (2022). Learning to reduce false positives in 
analytic bug detectors. In Proceedings of the 44th International 
Conference on Software Engineering (pp. 1307-1316).

Li, K., Chen, S., Fan, L., Feng, R., Liu, H., Liu, C., ... & Chen, Y. (2023). 
Comparison and Evaluation on Static Application Security Testing 
(SAST) Tools for Java. In Proceedings of the 31st ACM Joint European 
Software Engineering Conference and Symposium on the Foundations of 
Software Engineering (pp. 921-933).

Li, Z., Liu, Z., Wong, W. K., Ma, P., & Wang, S. (2024). Evaluating 
C/C++ Vulnerability Detectability of Query-Based Static 
Application Security Testing Tools. IEEE Transactions on Dependable 
and Secure Computing.

Linton, M. A. (1984). Implementing relational views of programs. 
ACM SIGSOFT Software Engineering Notes, 9(3), 132-140.

Liu, H., Chen, S., Feng, R., Liu, C., Li, K., Xu, Z., ... & Chen, Y. (2023). 
A comprehensive study on quality assurance tools for java. In 
Proceedings of the 32nd ACM SIGSOFT International Symposium on 
Software Testing and Analysis (pp. 285-297).

Mantovani, A., Compagna, L., Shoshitaishvili, Y., & Balzarotti, D. 
(2022). The Convergence of Source Code and Binary Vulnerability 
Discovery--A Case Study. In Proceedings of the 2022 ACM on Asia 
Conference on Computer and Communications Security (pp. 602-615).

Nachtigall, M., Schlichtig, M., & Bodden, E. (2022). A large-scale 
study of usability criteria addressed by static analysis tools. In 
Proceedings of the 31st ACM SIGSOFT International Symposium on 
Software Testing and Analysis (pp. 532-543).

Reynolds, J. C. (2002). Separation logic: A logic for shared mutable 
data structures. In Proceedings 17th Annual IEEE Symposium on Logic in 
Computer Science (pp. 55-74). IEEE.

Shen, M., Pillai, A., Yuan, B. A., Davis, J. C., & Machiry, A. (2023). 
An Empirical Study on the Use of Static Analysis Tools in

Open Source Embedded Software. arXiv preprint arXiv:2310.00205.

Wadhams, Z. D., Izurieta, C., & Reinhold, A. M. (2024). Barriers to 
Using Static Application Security Testing (SAST) Tools: A Literature 
Review. In Proceedings of the 39th IEEE/ACM International Conference on 
Automated Software Engineering Workshops (pp. 161-166).

http://ceur-ws.org


Uitgave
Nationaal Cyber Security Centrum (NCSC)
Postbus 117, 2501 CC  Den Haag
Turfmarkt 147, 2511 DP  Den Haag
070 751 5555

Meer informatie
www.ncsc.nl
info@ncsc.nl
@ncsc_nl

Augustus 2025

http://www.ncsc.nl
mailto:info%40ncsc.nl?subject=

	Samenvatting
	Inleiding
	Deelvragen en methode
	Deelvraag 1: wat zijn de nieuwe ontwikkelingen in statische analyse?
	Deelvraag 2: in hoeverre adresseren deze nieuwe ontwikkelingen de behoeften van ontwikkelaars?
	Deelvraag 3: hoe kunnen de nieuwe tools bijdragen aan de veiligheid van in Nederland ontwikkelde software?
	DV1.1: Toolselectie
	DV1.2: De geselecteerde tools
	DV1.3: Vergelijking
	DV2.1: Ervaringen ontwikkelaars
	
DV2.2: Adressering obstakels door nieuwe tools
	DV3.1 & DV3.2: Enquêteresultaten

	Conclusies en adviezen
	Discussie en vervolg
	Literatuur

